Part Number Hot Search : 
HYB25DC 8M161RB 1078089 160CA EZ5Z3L MUN2130 66500 SR815
Product Description
Full Text Search
 

To Download DS3252 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DS3251/DS3252/DS3253/DS3254 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
www.maxim-ic.com
GENERAL DESCRIPTION
The DS3251 (single), DS3252 (dual), DS3253 (triple), and DS3254 (quad) line interface units (LIUs) perform the functions necessary for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit paths and a built-in jitter attenuator. An on-chip clock adapter generates all line-rate clocks from a single input clock. Control interface options include 8-bit parallel, SPI, and hardware mode.
FEATURES

Pin-Compatible Family of Products Each Port Independently Configurable Receive Clock and Data Recovery for Up to 380 meters (DS3), 440 meters (E3), or 360 meters (STS-1) of 75W Coaxial Cable Standards-Compliant Transmit Waveshaping Three Control Interface Options: 8-Bit Parallel, SPI, and Hardware Mode Built-In Jitter Attenuators can be Placed in Either the Receive or Transmit Paths Jitter Attenuators Have Provisionable Buffer Depth: 16, 32, 64, or 128 Bits Built-In Clock Adapter Generates All Line-Rate Clocks from a Single Input Clock (DS3, E3, STS-1, OC-3, 19.44MHz, 38.88MHz, 77.76MHz) B3ZS/HDB3 Encoding and Decoding Minimal External Components Required Local and Remote Loopbacks Low-Power 3.3V Operation (5V Tolerant I/O) Industrial Temperature Range: -40C to +85C Small Package: 144-Pin, 13mm x 13mm Thermally Enhanced CSBGA Drop-In Replacement for DS3151/52/53/54 LIUs IEEE 1149.1 JTAG Support
APPLICATIONS
SONET/SDH and PDH Multiplexers Digital Cross-Connects Access Concentrators ATM and Frame Relay Equipment Routers PBXs DSLAMs CSU/DSUs
FUNCTIONAL DIAGRAM
EACH LIU LINE IN DS3, E3, OR STS-1 RXP RXN CLK DATA RECEIVE CLOCK AND DATA CONTROL STATUS TRANSMIT CLOCK AND DATA

Features continued on page 5.
Dallas Semiconductor DS325x
ORDERING INFORMATION
PART DS3251 DS3251N DS3252 DS3252N DS3253 DS3253N DS3254 DS3254N LIU 1 1 2 2 3 3 4 4 TEMP RANGE 0C to +70C -40C to +85C 0C to +70C -40C to +85C 0C to +70C -40C to +85C 0C to +70C -40C to +85C PIN-PACKAGE 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA 144 TE-CSBGA
LINE OUT DS3, E3, OR STS-1
TXP TXN
CLK DATA
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.
1 of 71
REV: 061705
DS3251/DS3252/DS3253/DS3254
TABLE OF CONTENTS
1. 2. 3. 4. 5. 6. 7. 8. STANDARDS COMPLIANCE ......................................................................................................... 6 DETAILED DESCRIPTION ............................................................................................................. 7 APPLICATION EXAMPLE .............................................................................................................. 7 BLOCK DIAGRAMS........................................................................................................................ 8 CONTROL INTERFACE MODES.................................................................................................... 9 PIN DESCRIPTIONS ..................................................................................................................... 10 REGISTER DESCRIPTIONS......................................................................................................... 15 RECEIVER .................................................................................................................................... 24
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 INTERFACING TO THE LINE........................................................................................................................... 24 OPTIONAL PREAMP ..................................................................................................................................... 24 AUTOMATIC GAIN CONTROL (AGC) AND ADAPTIVE EQUALIZER..................................................................... 24 CLOCK AND DATA RECOVERY (CDR)........................................................................................................... 24 LOSS-OF-SIGNAL (LOS) DETECTOR ............................................................................................................ 24 FRAMER INTERFACE FORMAT AND THE B3ZS/HDB3 DECODER .................................................................... 25 RECEIVE LINE-CODE VIOLATION COUNTER .................................................................................................. 26 RECEIVER POWER-DOWN ........................................................................................................................... 26 RECEIVER JITTER TOLERANCE .................................................................................................................... 26 TRANSMIT CLOCK ....................................................................................................................................... 27 FRAMER INTERFACE FORMAT AND THE B3ZS/HDB3 ENCODER .................................................................... 27 PATTERN GENERATION ............................................................................................................................... 27 WAVESHAPING, LINE BUILD-OUT, LINE DRIVER............................................................................................ 28 INTERFACING TO THE LINE........................................................................................................................... 28 TRANSMIT DRIVER MONITOR ....................................................................................................................... 28 TRANSMITTER POWER-DOWN...................................................................................................................... 28 TRANSMITTER JITTER GENERATION (INTRINSIC) ........................................................................................... 28 TRANSMITTER JITTER TRANSFER................................................................................................................. 28
9.
TRANSMITTER ............................................................................................................................. 27
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9
10. 11.
11.1 11.2
JITTER ATTENUATOR ............................................................................................................. 32 DIAGNOSTICS .......................................................................................................................... 34
PRBS GENERATOR AND DETECTOR............................................................................................................ 34 LOOPBACKS ............................................................................................................................................... 34
12. 13. 14. 15.
15.1 15.2
CLOCK ADAPTER.................................................................................................................... 35 RESET LOGIC .......................................................................................................................... 35 TRANSFORMERS..................................................................................................................... 36 CPU INTERFACES ................................................................................................................... 37
PARALLEL INTERFACE ................................................................................................................................. 37 SPI INTERFACE .......................................................................................................................................... 37
16.
16.1 16.2 16.3 16.4
JTAG TEST ACCESS PORT AND BOUNDARY SCAN............................................................ 40
JTAG DESCRIPTION ................................................................................................................................... 40 JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION............................................................................. 40 JTAG INSTRUCTION REGISTER AND INSTRUCTIONS...................................................................................... 42 JTAG TEST REGISTERS.............................................................................................................................. 43
17. 18. 19. 20. 21.
ELECTRICAL CHARACTERISTICS ......................................................................................... 44 PIN ASSIGNMENTS.................................................................................................................. 56 PACKAGE INFORMATION....................................................................................................... 70 THERMAL INFORMATION ....................................................................................................... 71 REVISION HISTORY................................................................................................................. 71
2 of 71
DS3251/DS3252/DS3253/DS3254
LIST OF FIGURES
Figure 2-1. External Connections ................................................................................................................................ 7 Figure 3-1. 4-Port Unchannelized DS3/E3 Card ......................................................................................................... 7 Figure 4-1. CPU Bus Mode Block Diagram ................................................................................................................. 8 Figure 4-2. Hardware Mode Block Diagram ................................................................................................................ 9 Figure 7-1. Status Register Logic .............................................................................................................................. 16 Figure 8-1. Receiver Jitter Tolerance ........................................................................................................................ 27 Figure 9-1. E3 Waveform Template........................................................................................................................... 30 Figure 9-2. DS3 AIS Structure ................................................................................................................................... 31 Figure 10-1. Jitter Attenuation/Jitter Transfer ............................................................................................................ 33 Figure 11-1. PRBS Output with Normal RCLK Operation ......................................................................................... 34 Figure 11-2. PRBS Output with Inverted RCLK Operation........................................................................................ 34 Figure 15-1. SPI Clock Polarity and Phase Options.................................................................................................. 38 Figure 15-2. SPI Bus Transactions............................................................................................................................ 39 Figure 16-1. JTAG Block Diagram............................................................................................................................. 41 Figure 16-2. JTAG TAP Controller State Machine .................................................................................................... 42 Figure 17-1. Transmitter Framer Interface Timing Diagram ...................................................................................... 46 Figure 17-2. Receiver Framer Interface Timing Diagram .......................................................................................... 46 Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed).................................................................... 50 Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed) .......................................................................... 52 Figure 17-5. SPI Interface Timing Diagram ............................................................................................................... 54 Figure 17-6. JTAG Timing Diagram........................................................................................................................... 55 Figure 18-1. DS3251 Hardware Mode Pin Assignment............................................................................................. 58 Figure 18-2. DS3251 Parallel Bus Mode Pin Assignment ......................................................................................... 59 Figure 18-3. DS3251 SPI Bus Mode Pin Assignment ............................................................................................... 60 Figure 18-4. DS3252 Hardware Mode Pin Assignment............................................................................................. 61 Figure 18-5. DS3252 Parallel Bus Mode Pin Assignment ......................................................................................... 62 Figure 18-6. DS3252 SPI Bus Mode Pin Assignment ............................................................................................... 63 Figure 18-7. DS3253 Hardware Mode Pin Assignment............................................................................................. 64 Figure 18-8. DS3253 Parallel Bus Mode Pin Assignment ......................................................................................... 65 Figure 18-9. DS3253 SPI Bus Mode Pin Assignment ............................................................................................... 66 Figure 18-10. DS3254 Hardware Mode Pin Assignment........................................................................................... 67 Figure 18-11. DS3254 Parallel Bus Mode Pin Assignment ....................................................................................... 68 Figure 18-12. DS3254 SPI Bus Mode Pin Assignment ............................................................................................. 69
3 of 71
DS3251/DS3252/DS3253/DS3254
LIST OF TABLES
Table 1-A. Applicable Telecommunications Standards ............................................................................................... 6 Table 6-A. Global Pin Descriptions............................................................................................................................ 10 Table 6-B. Receiver Pin Descriptions ........................................................................................................................ 11 Table 6-C. Transmitter Pin Descriptions.................................................................................................................... 11 Table 6-D. Hardware Mode Pin Descriptions ............................................................................................................ 12 Table 6-E. Parallel Bus Mode Pin Descriptions ......................................................................................................... 13 Table 6-F. SPI Bus Mode Pin Descriptions ............................................................................................................... 13 Table 6-G. Transmitter Data Select Options ............................................................................................................. 14 Table 6-H. Receiver PRBS Pattern Select Options................................................................................................... 14 Table 6-I. Hardware Mode Jitter Attenuator Configuration ........................................................................................ 14 Table 7-A. Register Map ............................................................................................................................................ 15 Table 9-A. DS3 Waveform Template......................................................................................................................... 29 Table 9-B. DS3 Waveform Test Parameters and Limits............................................................................................ 29 Table 9-C. STS-1 Waveform Template ..................................................................................................................... 29 Table 9-D. STS-1 Waveform Test Parameters and Limits ........................................................................................ 29 Table 9-E. E3 Waveform Test Parameters and Limits .............................................................................................. 30 Table 14-A. Transformer Characteristics................................................................................................................... 36 Table 14-B. Recommended Transformers ................................................................................................................ 36 Table 16-A. JTAG Instruction Codes ......................................................................................................................... 42 Table 16-B. JTAG ID Code........................................................................................................................................ 43 Table 17-A. Recommended DC Operating Conditions.............................................................................................. 44 Table 17-B. DC Characteristics ................................................................................................................................. 44 Table 17-C. Framer Interface Timing......................................................................................................................... 45 Table 17-D. Receiver Input Characteristics--DS3 and STS-1 Modes ...................................................................... 47 Table 17-E. Receiver Input Characteristics--E3 Mode ............................................................................................. 47 Table 17-F. Transmitter Output Characteristics--DS3 and STS-1 Modes................................................................ 48 Table 17-G. Transmitter Output Characteristics--E3 Mode...................................................................................... 48 Table 17-H. Parallel CPU Interface Timing ............................................................................................................... 49 Table 17-I. SPI Interface Timing ................................................................................................................................ 54 Table 17-J. JTAG Interface Timing............................................................................................................................ 55 Table 18-A. Pin Assignments Sorted by Signal Name .............................................................................................. 56 Table 20-A. Thermal Properties, Natural Convection................................................................................................ 71 Table 20-B. Theta-JA (qJA) vs. Airflow ....................................................................................................................... 71
4 of 71
DS3251/DS3252/DS3253/DS3254
FEATURES (CONTINUED)
Receiver AGC/equalizer block handles from 0 to 15dB of cable loss Loss-of-lock (LOL) PLL status indication Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp Digital and analog loss-of-signal (LOS) detectors (ANSI T1.231 and ITU G.775) Optional B3ZS/HDB3 decoder Line-code violation output pin and counter Binary or bipolar framer interface On-board 215 - 1 and 223 - 1 PRBS detector Clock inversion for glueless interfacing Tri-state clock and data outputs support protection switching applications Per-channel power-down control
Transmitter

Binary or bipolar framer interface Gapped clock capable up to 51.84MHz Wide 50 20% transmit clock duty cycle Clock inversion for glueless interfacing Optional B3ZS/HDB3 encoder 15 23 On-board 2 - 1 and 2 - 1 PRBS generator Complete DS3 AIS generator (ANSI T1.107) Unframed all-ones generator (E3 AIS) Line build-out (LBO) control Tri-state line driver outputs support protection switching applications Per-channel power-down control Output driver monitor
Jitter Attenuator
On-chip crystal-less jitter attenuator Meets all applicable ANSI, ITU, ETSI and Telcordia jitter transfer and output jitter requirements Can be placed in the transmit path, receive path or disabled Selectable FIFO depth: 16, 32, 64 or 128 bits Overflow and underflow status indications
Clock Adapter
Operates from a single DS3, E3, STS-1, 19.44 MHz, 38.88 MHz, or 77.76 MHz master clock Synthesizes clock rates that are not provided externally Use of common system timing frequencies such as 19.44 MHz eliminates the need for any local oscillators, reduces cost and board space Very small jitter gain and intrinsic jitter generation Optionally provides synthesized clocks on output pins for use by neighboring components, such as framers or mappers
Parallel CPU Interface

Multiplexed or nonmultiplexed 8-bit interface Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W)
SPI CPU Interface
Operation up to 10 Mbit/s Burst mode for multi-byte read and write accesses Programmable clock polarity and phase Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count
5 of 71
DS3251/DS3252/DS3253/DS3254
1. STANDARDS COMPLIANCE
Table 1-A. Applicable Telecommunications Standards
SPECIFICATION T1.102-1993 T1.107-1995 T1.231-1997 T1.404-1994 G.703 G.751 G.775 G.823 G.824 O.151 ETS 300 686 ETS 300 687 ETS EN 300 689 TBR 24 GR-253-CORE GR-499-CORE SPECIFICATION TITLE ANSI Digital Hierarchy--Electrical Interfaces Digital Hierarchy--Formats Specification Digital Hierarchy--Layer 1 In-Service Digital Transmission Performance Monitoring Network-to-Customer Installation--DS3 Metallic Interface Specification ITU-T Physical/Electrical Characteristics of Hierarchical Digital Interfaces, 1991 Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, 1993 Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria, November 1994 The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps Hierarchy, 1993 The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps Hierarchy, 1993 Error Performance Measuring Equipment Operating at the Primary Rate and Above, October 1992 ETSI Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U, D34S, D140U, and D140S); Network Interface Presentation, 1996 Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S); Connection Characteristics, 1996 Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal equipment interface, July 2001 Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines; Attachment Requirements for Terminal Equipment Interface, 1997 TELCORDIA SONET Transport Systems: Common Generic Criteria, Issue 2, December 1995 Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 1, December 1998
6 of 71
DS3251/DS3252/DS3253/DS3254
2. DETAILED DESCRIPTION
The DS3251 (single), DS3252 (dual), DS3253 (triple), and DS3254 (quad) LIUs perform the functions necessary for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs B3ZS/HDB3 decoding and outputs the recovered data in either binary or bipolar format. The transmitter accepts data in either binary or bipolar format, optionally performs B3ZS/HDB3 encoding, and drives standard pulse-shape waveforms onto 75W coaxial cable. The jitter attenuator can be mapped into the receiver data path, mapped into the transmitter data path, or be disabled. An on-chip clock adapter generates all line-rate clocks from a single input TM clock. Control interface options include 8-bit parallel, SPI , and hardware mode. The DS325x LIUs conform to the telecommunications standards listed in Table 1-A. Figure 2-1 shows the external components required for proper operation. Shorthand Notations. The notation "DS325x" throughout this data sheet refers to either the DS3251, DS3252, DS3253, or DS3254. This data sheet is the specification for all four devices. The LIUs on the DS325x devices are identical. For brevity, this document uses the pin name and register name shorthand "NAMEn," where "n" stands in place of the LIU port number. For example, on the DS3254 quad LIU, TCLKn is shorthand notation for pins TCLK1, TCLK2, TCLK3, and TCLK4 on LIU ports 1, 2, 3, and 4, respectively. This document also uses generic pin and register names such as TCLK (without a number suffix) when describing LIU operation. When working with a specific LIU on the DS325x devices, generic names like TCLK should be converted to actual pin names, such as TCLK1.
Figure 2-1. External Connections
TRANSMIT EACH LIU TXP
330W (1%)
VDD VDD
0.01mF
0.1mF
1mF
0.05mF (optional)
0.01mF
0.1mF
1mF
3.3V POWER PLANE
TXN
1:2ct
VDD
RECEIVE
Dallas Semiconductor DS325x
0.01mF
0.1mF
1mF
RXP
330W (1%)
VSS VSS GROUND PLANE
0.05mF (optional)
RXN
1:2ct
VSS
3. APPLICATION EXAMPLE
Figure 3-1. 4-Port Unchannelized DS3/E3 Card
DS3254
QUAD DS3/E3/STS-1 LIU
DS3144
QUAD DS3/E3 FRAMER
SPI is a trademark of Motorola, Inc.
7 of 71
BACKPLANE
DS3251/DS3252/DS3253/DS3254
4. BLOCK DIAGRAMS
Figure 4-1. CPU Bus Mode Block Diagram
T3MCLK E3MCLK STMCLK RLOSn
VDD VSS
Power Supply
Clock Adapter
TCLKn
Digital LOS Detector
PRBS Detector
PRBSn
master clock B3ZS/HDB3 Decoder Jitter Attenuator (can be placed in either the receive path or the transmit path) Mux Clock & Data Recovery Output Drivers, Clock Invert RTSn RPOSn/RDATn RNEGn/RLCVn RCLKn
RXPn Preamp
RXNn
Automatic Gain Control + Adaptive Equalizer ALOS
Remote Loopback Digital Local Loopback
squelch Analog Local Loopback TDMn
Driver Monitor
CPU Bus Interface and Global Configuration
CPU Bus I/O (see detailed views below)
Waveshaping
Line Driver
TXPn
TXNn
Mux
B3ZS/ HDB3 Encoder
Clock Invert
Mux
TPOSn/TDATn TNEGn TCLKn
Loopback Control
AIS, 100100..., PRBS Pattern Generation
TTSn
PARALLEL INTERFACE
HIZ RST HW = 0 MOT ALE CS WR / R/W RD / DS A[5:0] D[7:0] INT
SPI INTERFACE
HIZ RST HW = 0 CPU Bus Interface and Global Configuration CS SCLK SDI SDO CPHA CPOL INT
CPU Bus Interface and Global Configuration
MOT=0, WR=0, RD=0
Dallas Semiconductor DS325x
8 of 71
DS3251/DS3252/DS3253/DS3254
Figure 4-2. Hardware Mode Block Diagram
RMONn T3MCLK E3MCLK STMCLK RJAn RLOSn RBIN
VDD VSS
Power Supply
Clock Adapter
TCLKn
Digital LOS Detector
PRBS Detector
PRBSn
master clock B3ZS/HDB3 Decoder Jitter Attenuator (can be placed in either the receive path or the transmit path) Mux Clock & Data Recovery Output Drivers, Clock Invert RTSn RPOSn/RDATn RNEGn/RLCVn RCLKn RCINV
RXPn Preamp
RXNn
Automatic Gain Control + Adaptive Equalizer ALOS
Remote Loopback Digital Local Loopback Global Configuration
squelch Analog Local Loopback TDMn
Driver Monitor
HIZ RST HW E3Mn STSn
Waveshaping
Line Driver
TXPn
TXNn
Mux
B3ZS/ HDB3 Encoder
Clock Invert
Mux
TPOSn/TDATn TNEGn TCLKn TCINV
Loopback Control
AIS, 100100..., PRBS Pattern Generation
TTSn
LLBn
RLBn
TLBOn
TJAn
TBIN
TDSAn, TDSBn
Dallas Semiconductor DS325x
5. CONTROL INTERFACE MODES
The DS325x devices can operate in hardware mode or two different CPU bus modes: 8-bit parallel and SPI serial. In hardware mode, configuration input pins control device configuration, while status output pins indicate device status. Internal registers are not accessible in hardware mode. The device is configured for hardware mode when the HW pin is wired high (HW = 1). In the CPU bus modes, most of the configuration and status pins used in hardware mode are reassigned to the CPU bus interface. Through the bus interface an external processor can access a set of internal configuration and status registers. A few configuration and status pins are active in both hardware mode and the CPU bus modes to support specialized applications, such as protection switching. The device is configured for CPU bus mode when the HW pin is wired low (HW = 0). The default CPU interface is 8-bit parallel. When the MOT, RD and WR pins are all low, the SPI interface is enabled. See Section 15 for more information on the CPU interfaces. With the exception of the HW pin, configuration and status pins available in hardware mode have corresponding register bits in the CPU bus mode. The hardware mode pins and the CPU bus mode register bits have identical names and functions, with the exception that all register bits are active high. For example, LOS is indicated by the receiver on the RLOS pin (active low) in hardware mode and the RLOS register bit (active high) in CPU bus mode. The few configuration input pins that are active in CPU bus mode also have corresponding register bits. In these cases, the actual configuration is the logical OR of pin assertion and register bit assertion. For example, the transmitter output driver is tri-stated if the TTS pin is asserted (i.e., low) or the TTS register bit is asserted (high). Figure 4-1 and Figure 4-2 show block diagrams of the DS325x in hardware mode and in CPU bus mode.
9 of 71
DS3251/DS3252/DS3253/DS3254
6. PIN DESCRIPTIONS
Table 6-A through Table 6-C list the pins that are always active. Table 6-D through Table 6-F list the additional pins that active in each of the three control interface modes. Section 18 shows pin assignments for all three control interface modes.
Table 6-A. Global Pin Descriptions
Note: These pins are always active. NAME TYPE FUNCTION T3 Master Clock. If a clock is applied to T3MCLK, it must be transmission-quality (20ppm, low jitter). When present, the T3MCLK signal serves as the DS3 master clock for the CDRs and jitter attenuators of all LIUs configured for DS3 operation. If T3MCLK is held low, the clock adapter block synthesizes the DS3 master clock from the clock applied to E3MCLK (first choice) or the clock applied to STMCLK (second choice). If T3MCLK is held high, each LIU in DS3 mode uses its TCLK signal as its master clock. If T3MCLK is held low but E3MCLK and STMCLK are not toggling, then each LIU in DS3 mode uses its TCLK signal as its master clock. Pin is input-only in Hardware mode, input/output in CPU Bus mode. See Section 12 for more information. E3 Master Clock. If a clock is applied to E3MCLK, it must be transmission-quality (20ppm, low jitter). When present, the E3MCLK signal serves as the E3 master clock for the CDRs and jitter attenuators of all LIUs configured for E3 operation. If E3MCLK is held low, the clock adapter block synthesizes the E3 master clock from the clock applied to T3MCLK (first choice) or the clock applied to STMCLK (second choice). If E3MCLK is held high, each LIU in E3 mode uses its TCLK signal as its master clock. If E3MCLK is held low but T3MCLK and STMCLK are not toggling, then each LIU in E3 mode uses its TCLK signal as its master clock. Pin is input-only in Hardware mode, input/output in CPU Bus mode. See Section 12 for more information. STS-1 Master Clock. If a clock is applied to STMCLK, it must be transmission-quality (20ppm, low jitter). When present, the STMCLK signal serves as the STS-1 master clock for the CDRs and jitter attenuators of all LIUs configured for STS-1 operation. If STMCLK is held low, the clock adapter block synthesizes the STS-1 master clock from the clock applied to T3MCLK (first choice) or the clock applied to E3MCLK (second choice). If STMCLK is held high, each LIU in STS-1 mode uses its TCLK signal as its master clock. If STMCLK is held low but T3MCLK and E3MCLK are not toggling, then each LIU in STS-1 mode uses its TCLK signal as its master clock. Pin is input-only in Hardware mode, input/output in CPU Bus mode. See Section 12 for more information. High-Z Enable Input (Active Low, Open Drain, Internal 10kW Pullup to VDD) 0 = tri-state all output pins (Note that the JTRST pin must be low.) 1 = normal operation Hardware Mode Select 0 = CPU bus mode 1 = Hardware mode See Section 5 for details. JTAG IEEE 1149.1 Test Serial Clock. JTCLK shifts data into JTDI on the rising edge and out of JTDO on the falling edge. If boundary scan is not used, JTCLK should be pulled high. JTAG IEEE 1149.1 Test Serial-Data Input (Internal 10kW Pullup). Test instructions and data are clocked in on this pin on the rising edge of JTCLK. If boundary scan is not used, JTDI should be left unconnected or pulled high. JTAG IEEE 1149.1 Test Serial-Data Output. Test instructions and data are clocked out on this pin on the falling edge of JTCLK. JTAG IEEE 1149.1 Test Reset (Internal 10kW Pullup to VDD). This pin is used to asynchronously reset the test access port (TAP) controller. If boundary scan is not used, JTRST can be held low or high. JTAG IEEE 1149.1 Test Mode Select (Internal 10kW Pullup to VDD). This pin is sampled on the rising edge of JTCLK and is used to place the port into the various defined IEEE 1149.1 states. If boundary scan is not used, JTMS should be left unconnected or pulled high. Reset Input (Active Low, Open Drain, Internal 10kW Pullup to VDD). When this global asynchronous reset is pulled low, the internal circuitry is reset and the internal registers (CPU bus mode) are forced to their default values. The device is held in reset as long as RST is low. RST should be held low for at least two master clock cycles. See Section 13 for more information. Factory Test Pin. Leave unconnected or wire high for normal operation. Positive Supply. 3.3V 5%. All VDD signals should be wired together. Ground Reference. All VSS signals should be wired together.
T3MCLK
I/O
E3MCLK
I/O
STMCLK
I/O
HIZ
IPU
HW JTCLK JTDI JTDO JTRST JTMS
I I IPU O IPU IPU
RST TEST VDD VSS
IPU IPU P P
10 of 71
DS3251/DS3252/DS3253/DS3254
Table 6-B. Receiver Pin Descriptions
Note: These pins are always active. NAME RXPn, RXNn RCLKn TYPE I O3 FUNCTION Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75W coaxial cable through a 1:2 step-up transformer (Figure 2-1). Receiver Clock. The recovered clock is output on the RCLK pin. Recovered data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1). During a loss of signal (RLOS = 0), the RCLK output signal is derived from the LIU's master clock. Receiver Positive AMI/Receiver Data. When the receiver is configured to have a bipolar interface (RBIN = 0), RPOS pulses high for each positive AMI pulse received. When the receiver is configured to have a binary interface (RBIN = 1), RDAT outputs decoded binary data. RPOS/RDAT is updated either on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1). Receiver Negative AMI/Line-Code Violation. When the receiver is configured to have a bipolar interface (RBIN = 0), RNEG pulses high for each negative AMI pulse received. When the receiver is configured to have a binary interface (RBIN = 1), RLCV pulses high to flag code violations. See Section 8.6 for further details on code violations. RNEG/RLCV is updated either on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1). Receiver Tri-State Enable (Active Low). RTS tri-states the RPOS/RDAT, RNEG/RLCV, and RCLK receiver outputs. This feature supports applications requiring LIU redundancy. Receiver outputs from multiple LIUs can be wire-ORed together, eliminating the need for external switches or muxes. The receiver continues to operate internally when RTS is low. 0 = tri-state the receiver outputs 1 = enable the receiver outputs Receiver Loss of Signal (Active Low, Open Drain). RLOS is asserted upon detection of 175 75 consecutive zeros in the receive data stream. RLOS is deasserted when there are no excessive zero occurrences over a span of 175 75 clock periods. An excessive zero occurrence is defined as three or more consecutive zeros in the DS3 and STS-1 modes or four or more zeros in the E3 mode. See Section 8.5 for more information. PRBS Detector Output. This signal reports the status of the PRBS detector. See Section 11 for further details.
RPOSn/ RDATn
O3
RNEGn/ RLCVn
O3
RTSn
I
RLOSn
O
PRBSn
O
Table 6-C. Transmitter Pin Descriptions
Note: These pins are always active. NAME TCLKn TYPE I FUNCTION Transmitter Clock. A DS3 (44.736MHz 20ppm), E3 (34.368MHz 20ppm), or STS-1 (51.840MHz 20ppm) clock should be applied at this signal. Data to be transmitted is clocked into the device at TPOS/TDAT and TNEG either on the rising edge of TCLK (TCINV = 0) or the falling edge of TCLK (TCINV = 1). See Section 9 for additional details. Transmitter Positive AMI/Transmitter Data. When the transmitter is configured to have a bipolar interface (TBIN = 0), a positive pulse is transmitted on the line when TPOS is high. When the transmitter is configured to have a binary interface (TBIN = 1), the data on TDAT is transmitted after B3ZS or HDB3 encoding. TPOS/TDAT is sampled either on the rising edge of TCLK (TCINV = 0) or on the falling edge of TCLK (TCINV = 1). Transmitter Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN = 0), a negative pulse is transmitted on the line when TNEG is high. When the transmitter is configured to have a binary interface (TBIN = 1), TNEG is ignored and should be wired either high or low. TNEG is sampled either on the rising edge of TCLK (TCINV = 0) or on the falling edge of TCLK (TCINV = 1). Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75W coaxial cable through a 2:1 step-down transformer (Figure 2-1). These outputs can be tri-stated using the TTS pin or the TTS or TPS configuration bits. Transmitter Driver Monitor (Active Low, Open Drain). TDM reports the status of the transmit driver monitor. When the monitor detects a faulty transmitter, TDM is driven low. TDM requires an external pullup to VDD. See Section 9.6 for more information. Transmitter Tri-State Enable (Active Low). TTS tri-states the transmitter outputs (TXP and TXN). This feature supports applications requiring LIU redundancy. Transmitter outputs from multiple LIUs can be wire-ORed together, eliminating external switches. The transmitter continues to operate internally when TTS is active. 0 = tri-state the transmitter output driver 1 = enable the transmitter output driver 11 of 71
TPOSn/ TDATn
I
TNEGn TXPn, TXNn TDMn
I
O3 O
TTSn
I
DS3251/DS3252/DS3253/DS3254
Table 6-D. Hardware Mode Pin Descriptions
Note: These pins are active in hardware mode. NAME E3Mn TYPE I FUNCTION E3 Mode Enable 0 = DS3 operation 1 = E3 or STS-1 operation STS-1 Mode Enable When E3M = 1, 0 = E3 operation 1 = STS-1 operation When E3M = 0, STS selects the DS3 AIS pattern. See Table 6-G. Local Loopback Select, Remote Loopback Select {LLB, RLB} = 00 = no loopback 01 = remote loopback 10 = analog local loopback 11 = digital local loopback Receiver Binary Framer-Interface Enable 0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is disabled. 1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations. The B3ZS/HDB3 encoder is enabled. Receiver Clock Invert 0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK. 1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK. Receiver Jitter Attenuator Enable 0 = remove jitter attenuator from the receiver path 1 = insert jitter attenuator into the receiver path See Table 6-I for more information. Receive Monitor-Preamp Enable. RMON determines whether or not the receiver's preamp is enabled to provide flat gain to the incoming signal before the AGC/equalizer block processes it. This feature should be enabled when the device is being used to monitor signals that have been resistively attenuated by a monitor jack. See Section 8.2 for more information. 0 = disable the monitor preamp 1 = enable the monitor preamp Transmitter Binary Framer-Interface Enable 0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is disabled. 1 = Transmitter framer interface is binary on the TDAT pin. (TNEG is ignored and should be wired low.) The B3ZS/HDB3 encoder is enabled. Transmitter Clock Invert 0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. 1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. Transmitter Data Select. These inputs select the source of the transmit data. See Table 6-G for details. Transmitter Jitter Attenuator Enable 0 = remove jitter attenuator from the transmitter path 1 = insert jitter attenuator into the transmitter path See Table 6-I for more information. Transmitter Line Build-Out Enable. TLBO indicates cable length for waveform shaping in DS3 and STS-1 modes. TLBO is ignored for E3 mode and should be wired high or low. 0 = cable length 225ft 1 = cable length < 225ft
STSn
I
LLBn, RLBn
I
RBIN
I
RCINV
I
RJAn
I
RMONn
I
TBIN
I
TCINV TDSAn, TDSBn TJAn
I I I
TLBOn
I
12 of 71
DS3251/DS3252/DS3253/DS3254
Table 6-E. Parallel Bus Mode Pin Descriptions
Note: These pins are active in parallel bus mode.
NAME MOT ALE CS WR / R/W TYPE I I I I FUNCTION Motorola-Style Parallel CPU Interface 0 = Parallel CPU interface is Intel-style 1 = Parallel CPU interface is Motorola-style Address Latch Enable. This signal controls a latch on the A[3:0] inputs. For a nonmultiplexed parallel CPU interface, ALE is wired high to make the latch transparent. For a multiplexed parallel CPU interface, the falling edge of ALE latches the address. Chip Select (Active Low). CS must be asserted to read or write internal registers. Write Enable (Active Low) or Read/Write Select. For the Intel-style parallel CPU interface (MOT = 0), WR is asserted to write internal registers. For the Motorola-style parallel CPU interface (MOT = 1), R/W determines the type of bus transaction, with R/W = 1 indicating a read and R/W = 0 indicating a write. Read Enable (Active Low) or Data Strobe (Active Low). For the Intel-style parallel CPU interface (MOT = 0), RD is asserted to read internal registers. For the Motorola-style parallel CPU interface (MOT = 1), the rising edge of DS writes data to internal registers. Address Bus. These inputs specify the address of the internal register to be accessed. A5 is not present on the DS3252. A5 and A4 are not present on the DS3251. Data Bus. These bidirectional lines are inputs during writes to internal registers and outputs during reads. Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or masked.
RD / DS A[5:0] D[7:0] INT
I I I/O O
Table 6-F. SPI Bus Mode Pin Descriptions
Note: These pins are active in SPI bus mode. NAME MOT, RD, WR CS SCLK SDI SDO CPHA CPOL INT
Note 1:
TYPE I I I I O I I O
FUNCTION Wire these pins low to enable SPI bus mode. Chip Select (Active Low). CS must be asserted to read or write internal registers. Serial Clock for SPI Interface. SCLK is always driven by the SPI bus master. Serial Data Input for SPI Interface. The SPI bus master transmits data to the device on this pin. Serial Data Output for SPI Interface The device transmits data to the SPI bus master on this pin. SPI Clock Phase 0 = data is latched on the leading edge of the SCLK pulse 1 = data is latched on the trailing edge of the SCLK pulse SPI Clock Polarity 0 = SCLK is normally low and pulses high during bus transactions 1 = SCLK is normally high and pulses low during bus transactions Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or masked.
PIN TYPES I = input pin IPU = input pin with internal 10kW pullup O = output pin O3 = output pin that can be tri-stated P = power-supply pin
13 of 71
DS3251/DS3252/DS3253/DS3254
Table 6-G. Transmitter Data Select Options
TDSA 0 0 0 0 0 1 1 1 1
Note 1: Note 2:
TDSB 0 1 1 1 1 0 1 1 1
E3M X 0 1 1 0 X 1 0 1
STS X 0 0 1 1 X 0 X 1
Tx MODE Any DS3 E3 STS-1 DS3 Any E3 DS3 STS-1
TRANSMIT DATA SELECTED Normal data as input at TPOS and TNEG Unframed all ones DS3 AIS per ANSI T1.107 (Figure 9-2) Unframed 100100... pattern 23 2 - 1 PRBS pattern per ITU O.151 2
15
- 1 PRBS pattern per ITU O.151
This coding of the TDSA, TDSB, E3M, and STS bits allows AIS generation to be enabled by holding TDSA = 0 and changing TDSB from 0 to 1. The type of DS3 AIS signal is selected by the STS bit with E3M = 0. If E3M and/or STS are changed when {TDSA,TDSB} 00, TDSA and TDSB must both be cleared to 0. After they are cleared, TDSA and TDSB can be configured to transmit a pattern in the new operating mode.
Table 6-H. Receiver PRBS Pattern Select Options
E3M 1 0 1 STS 0 X 1 Rx MODE E3 DS3 STS-1 2 2
23 15
RECEIVER PRBS PATTERN SELECTED - 1 PRBS pattern per ITU O.151 - 1 PRBS pattern per ITU O.151
Table 6-I. Hardware Mode Jitter Attenuator Configuration
TJA 0 0 1 1 RJA 0 1 0 1 JITTER ATTENUATOR CONFIGURATION Disabled Receive path, 16-bit buffer depth Transmit path, 16-bit buffer depth Transmit path, 32-bit buffer depth
14 of 71
DS3251/DS3252/DS3253/DS3254
7. REGISTER DESCRIPTIONS
When the DS325x is configured in either of the two CPU bus modes (HW = 0), the registers shown in Table 7-A are accessible through the CPU bus interfaces. All registers for the LIU ports are forced to their default values during an internal power-on reset or when the RST pin is driven low. Setting an LIU's RST bit high forces all registers for that LIU to their default values. All register bits marked "--" must be written 0 and ignored when read. The TEST registers must be left at their reset value of 00h for normal operation. On the DS3253, only registers for LIUs 1, 2, and 3 are available. Writes into LIU 4 address space are ignored. Reads from LIU 4 address space return all zeros. On the DS3252, address line A5 is not present, limiting the address space to the LIU 1 and LIU 2 registers. On the DS3251, address lines A5 and A4 are not present, limiting the address space to the LIU 1 registers.
Table 7-A. Register Map
ADDRESS 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h-0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h-1Fh 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h-2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h-3Fh REGISTER GCR1 TCR1 RCR1 SR1 SRL1 SRIE1 RCVL1 RCVH1 CACR Test Registers GCR2 TCR2 RCR2 SR2 SRL2 SRIE2 RCVL2 RCVH2 unused Test Registers GCR3 TCR3 RCR3 SR3 SRL3 SRIE3 RCVL3 RCVH3 unused Test Registers GCR4 TCR4 RCR4 SR4 SRL4 SRIE4 RCVL4 RCVH4 unused Test Registers BIT 7 E3M JAL[1] ITU -- JAFL JAFIE RCV[7] RCV[15] T3MOE -- E3M JAL[1] ITU -- JAFL JAFIE RCV[7] RCV[15] -- -- E3M JAL[1] ITU -- JAFL JAFIE RCV[7] RCV[15] -- -- E3M JAL[1] ITU -- JAFL JAFIE RCV[7] RCV[15] -- -- BIT 6 STS TBIN RBIN -- JAEL JAEIE RCV[6] RCV[14] E3MOE -- STS TBIN RBIN -- JAEL JAEIE RCV[6] RCV[14] -- -- STS TBIN RBIN -- JAEL JAEIE RCV[6] RCV[14] -- -- STS TBIN RBIN -- JAEL JAEIE RCV[6] RCV[14] -- -- BIT 5 LIU 1 LLB TCINV RCINV TDM TDML TDMIE RCV[5] RCV[13] STMOE -- LIU 2 LLB TCINV RCINV TDM TDML TDMIE RCV[5] RCV[13] -- -- LIU 3 LLB TCINV RCINV TDM TDML TDMIE RCV[5] RCV[13] -- -- LIU 4 LLB TCINV RCINV TDM TDML TDMIE RCV[5] RCV[13] -- -- BIT 4 RLB TJA RJA PRBS PRBSL PRBSIE RCV[4] RCV[12] -- -- RLB TJA RJA PRBS PRBSL PRBSIE RCV[4] RCV[12] -- -- RLB TJA RJA PRBS PRBSL PRBSIE RCV[4] RCV[12] -- -- RLB TJA RJA PRBS PRBSL PRBSIE RCV[4] RCV[12] -- -- BIT 3 TDSA TPD RPD -- PBERL PBERIE RCV[3] RCV[11] -- -- TDSA TPD RPD -- PBERL PBERIE RCV[3] RCV[11] -- -- TDSA TPD RPD -- PBERL PBERIE RCV[3] RCV[11] -- -- TDSA TPD RPD -- PBERL PBERIE RCV[3] RCV[11] -- -- BIT 2 BIT 1 BIT 0 RST JAL[0] RCVUD RLOS RLOSL RLOSIE RCV[0] RCV[8] AMCEN -- RST JAL[0] RCVUD RLOS RLOSL RLOSIE RCV[0] RCV[8] -- -- RST JAL[0] RCVUD RLOS RLOSL RLOSIE RCV[0] RCV[8] -- -- RST JAL[0] RCVUD RLOS RLOSL RLOSIE RCV[0] RCV[8] -- -- TDSB -- TTS TLBO RTS RMON -- RLOL RCVL RLOLL RCVIE RLOLIE RCV[2] RCV[1] RCV[10] RCV[9] AMCSEL[1] AMCSEL[0] -- -- TDSB TTS RTS -- RCVL RCVIE RCV[2] RCV[10] -- -- TDSB TTS RTS -- RCVL RCVIE RCV[2] RCV[10] -- -- TDSB TTS RTS -- RCVL RCVIE RCV[2] RCV[10] -- -- -- TLBO RMON RLOL RLOLL RLOLIE RCV[1] RCV[9] -- -- -- TLBO RMON RLOL RLOLL RLOLIE RCV[1] RCV[9] -- -- -- TLBO RMON RLOL RLOLL RLOLIE RCV[1] RCV[9] -- --
Note 1: Underlined bits are read-only; all other bits are read-write. Note 2: The registers are named REGn, where n = the LIU number (1, 2, 3, or 4). The register names are hyperlinks to the register descriptions. Note 3: The bit names are the same for each LIU register set.
15 of 71
DS3251/DS3252/DS3253/DS3254
Status Register Description
The status registers have two types of status bits. Real-time status bits--located in the SR registers--indicate the state of a signal at the time it was read. Latched status bits--located in the SRL registers--are set when a signal changes state (low-to-high, high-to-low, or both, depending on the bit) and cleared when written with a logic 1 value. After clearing, latched status bits remain cleared until the signal changes state again. Interrupt-enable bits-- located in the SRIE registers--control whether or not the INT pin is driven low when latched register bits are set.
Figure 7-1. Status Register Logic
EVENT REAL-TIME STATUS
SR
WR
LATCHED STATUS REGISTER SET ON EVENT DETECT CLEAR ON WRITE LOGIC 1
LATCHED STATUS
SRL
INT WR INT ENABLE REGISTER OTHER INT SOURCE
Register Name: Register Description: Register Address: Bit Name Default 7 E3M 0
GCRn Global Configuration Register 00h, 10h, 20h, 30h 6 STS 0 5 LLB 0 4 RLB 0 3 TDSA 0 2 TDSB 0 1 -- -- 0 RST 0
Bit 7: E3 Mode Enable (E3M) 0 = DS3 operation 1 = E3 or STS-1 operation Bit 6: STS-1 Mode Enable (STS) When E3M = 1, 0 = E3 operation 1 = STS-1 operation When E3M = 0, STS selects the DS3 AIS pattern (Table 6-G). Bits 5, 4: Local Loopback, Remote Loopback Select (LLB, RLB) 00 = no loopback 01 = remote loopback 10 = analog local loopback 11 = digital local loopback Bits 3, 2: Transmitter Data Select (TDSA, TDSB). See Table 6-G for details. Bit 0: Reset (RST). When this bit is high, the digital logic of the LIU is held in reset and all registers for that LIU (except the RST bit) are forced to their default values. RST is cleared to 0 at power-up and when the RST pin is activated. 0 = normal operation 1 = reset LIU
16 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 JAL[1] 0 6 TBIN 0
TCRn Transmitter Configuration Register 01h, 11h, 21h, 31h 5 TCINV 0 4 TJA 0 3 TPD 0 2 TTS 1 1 TLBO 0 0 JAL[0] 0
Bits 7 and 0: Jitter Attenuator Buffer Length (JAL[1:0]) 00 = 16 bits 01 = 32 bits 10 = 64 bits 11 = 128 bits These lengths are the total size of the buffer. The jitter attenuator control logic seeks to keep the read and write pointers half a buffer apart. Therefore typical latency through the jitter attenuator is half the buffer length. Bit 6: Transmitter Binary Interface Enable (TBIN) 0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is disabled. 1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled. Bit 5: Transmitter Clock Invert (TCINV) 0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. 1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. Bit 4: Transmitter Jitter Attenuator Enable (TJA) 0 = Remove jitter attenuator from the transmitter path. 1 = Insert jitter attenuator into the transmitter path. Bit 3: Transmitter Power-Down Enable (TPD) 0 = enable the transmitter 1 = power-down the transmitter (output driver tri-stated) Bit 2: Transmitter Tri-State Enable (TTS). This bit is set to 1 on reset, which tri-states the transmitter TXP and TXN pins. The transmitter circuitry is left powered up in this mode. The TTS input pin is inverted and logically ORed with this bit. 0 = enable the transmitter output driver 1 = tri-state the transmitter output driver Bit 1: Transmitter Line Build-Out (TLBO). TLBO indicates cable length for waveform shaping in DS3 and STS-1 modes. TLBO is ignored in E3 mode. 0 = cable length 225ft 1 = cable length < 225ft
17 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 ITU 0
RCRn Receiver Configuration Register 02h, 12h, 22h, 32h 6 RBIN 0 5 RCINV 0 4 RJA 0 3 RPD 0 2 RTS 1 1 RMON 0 0 RCVUD 0
Bit 7: ITU CV Mode (ITU). This bit controls what types of bipolar violations (BPVs) are flagged as code violations on the RLCV pin and counted in the RCV register. It also controls whether or not excessive zero (EXZ) events are flagged and counted. An EXZ event is the occurrence of a third consecutive zero (DS3 or STS-1 modes) or fourth consecutive zero (E3 mode) in a sequence of zeros. 0 = In all three modes (DS3, E3, and STS-1) BPVs that are not part of a valid codeword are flagged and counted. EXZ events are also flagged and counted. 1 = In DS3 and STS-1 modes, BPVs that are not part of valid codewords are flagged and counted. In E3 mode, BPVs that are the same polarity as the last BPV are flagged and counted. EXZ events are not flagged and counted in any mode. Bit 6: Receiver Binary Interface Enable (RBIN) 0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is disabled. 1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations. The B3ZS/HDB3 encoder is enabled. Bit 5: Receiver Clock Invert (RCINV) 0 = RPOS/RDAT and RNEG/RLCV are sampled on the falling edge of RCLK. 1 = RPOS/RDAT and RNEG/RLCV are sampled on the rising edge of RCLK. Bit 4: Receiver Jitter Attenuator Enable (RJA). (Note that TCR:TJA = 1 takes precedence over RJA = 1.) 0 = remove jitter attenuator from the receiver path 1 = insert jitter attenuator into the receiver path Bit 3: Receiver Power-Down Enable (RPD) 0 = enable the receiver 1 = power-down the receiver (RPOS/RDAT, RNEG/RLCV, and RCLK tri-stated) Bit 2: Receiver Tri-State Enable (RTS). This signal is set to 1 on reset, which tri-states the receiver RPOS/RDAT, RNEG/RLCV, and RCLK pins. The receiver is left powered up in this mode. The RTS pin is inverted and logically ORed with this bit. 0 = enable the receiver outputs 1 = tri-state the receiver outputs (RPOS/RDAT, RNEG/RLCV, and RCLK) Bit 1: Receiver Monitor Preamp Enable (RMON) 0 = disable the monitor preamp 1 = enable the monitor preamp Bit 0: Receive Code-Violation Counter Update (RCVUD). When this control bit transitions from low to high, the RCVL and RCVH registers are loaded with the current code-violation count, and the internal code-violation counter is cleared. 0(R)1 = Update RCV registers and clear internal code-violation counter
18 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 -- -- 6 -- --
SRn Status Register 03h, 13h, 23h, 33h 5 TDM 0 4 PRBS 0 3 -- -- 2 -- -- 1 RLOL 1 0 RLOS 1
Bit 5: Transmitter Driver Monitor (TDM). This read-only status bit indicates the current state of the transmit driver monitor. See Section 9.6 for more information. 0 = the transmitter is operating normally 1 = the transmitter amplitude is out of range Bit 4: PRBS Detector Output (PRBS). This read-only status bit indicates the current state of the receiver's PRBS detector. See Table 6-H for the expected PRBS pattern. 0 = in sync with expected pattern 1 = out of sync, expected pattern not detected Bit 1: Receiver Loss of Lock (RLOL). This read-only status bit indicates the current state of the receiver clock recovery PLL. 0 = the receiver PLL is locked onto the incoming signal 1 = the receiver PLL is not locked onto the incoming signal Bit 0: Receiver Loss of Signal (RLOS). This read-only status bit indicates the current state of the receiver loss-ofsignal detector. 0 = signal present 1 = loss of signal
19 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 JAFL 0 6 JAEL 0
SRLn Status Register Latched 04h, 14h, 24h, 34h 5 TDML 0 4 PRBSL 0 3 PBERL 0 2 RCVL 0 1 RLOLL 0 0 RLOSL 0
Bit 7: Jitter Attenuator Full Latched (JAFL). This latched status bit is set to one when the jitter attenuator buffer is full. JAFL is cleared when the host processor writes a one to it and is not set again until the full condition clears and the buffer becomes full again. When JAFL is set, it can cause a hardware interrupt to occur if the JAFIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when JAFL is cleared or JAFIE is set to zero. Bit 6: Jitter Attenuator Empty Latched (JAEL). This latched status bit is set to one when the jitter attenuator buffer is empty. JAEL is cleared when the host processor writes a one to it and is not set again until the empty condition clears and the buffer becomes empty again. When JAEL is set, it can cause a hardware interrupt to occur if the JAEIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when JAEL is cleared or JAEIE is set to zero. Bit 5: Transmitter Driver Monitor Latched (TDML). This latched status bit is set to one when the TDM status bit changes state (low to high or high to low). TDML is cleared when the host processor writes a one to it and is not set again until TDM changes state again. When TDML is set, it can cause a hardware interrupt to occur if the TDMIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when TDML is cleared or TDMIE is set to zero. Bit 4: PRBS Detector Output Latched (PRBSL). This latched status bit is set to one when the PRBS status bit changes state (low to high or high to low). PRBSL is cleared when the host processor writes a one to it and is not set again until PRBS changes state again. When PRBSL is set, it can cause a hardware interrupt to occur if the PRBSIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when PRBSL is cleared or PRBSIE is set to zero. Bit 3: PRBS Detector Bit Error Latched (PBERL). This latched status bit is set to one when the PRBS detector is in sync and a bit error has been detected. PBERL is cleared when the host processor writes a one to it and is not set again until another bit error is detected. When PBERL is set, it can cause a hardware interrupt to occur if the PBERIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when PBERL is cleared or PBERIE is set to zero. Bit 2: Receiver Code Violation Latched (RCVL). This latched status bit is set to one when the RCV status bit in the SR register goes high. RCVL is cleared when the host processor writes a one to it and is not set again until RCV goes high again. When RCVL is set, it can cause a hardware interrupt to occur if the RCVIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when RCVL is cleared or RCVIE is set to zero. Bit 1: Receiver Loss-of-Clock Lock Latched (RLOLL). This latched status bit is set to one when the RLOL status bit in the SR register changes state (low to high or high to low). RLOLL is cleared when the host processor writes a one to it and is not set again until RLOL changes state again. When RLOLL is set, it can cause a hardware interrupt to occur if the RLOLIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when RLOLL is cleared or RLOLIE is set to zero. Bit 0: Receiver Loss-of-Signal Latched (RLOSL). This latched status bit is set to one when the RLOS status bit in the SR register changes state (low to high or high to low). RLOSL is cleared when the host processor writes a one to it and is not set again until RLOS changes state again. When RLOSL is set, it can cause a hardware interrupt to occur if the RLOSIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when RLOSL is cleared or RLOSIE is set to zero.
20 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 JAFIE 0
SRIEn Status Register Interrupt Enable 05h, 15h, 25h, 35h 6 JAEIE 0 5 TDMIE 0 4 PRBSIE 0 3 PBERIE 0 2 RCVIE 0 1 RLOLIE 0 0 RLOSIE 0
Bit 7: Jitter Attenuator Full Interrupt Enable (JAFIE) 0 = mask JAFL interrupt 1 = enable JAFL interrupt Bit 6: Jitter Attenuator Empty Interrupt Enable (JAEIE) 0 = mask JAEL interrupt 1 = enable JAEL interrupt Bit 5: Transmitter Driver Monitor Interrupt Enable (TDMIE) 0 = mask TDML interrupt 1 = enable TDML interrupt Bit 4: PRBS Detector Interrupt Enable (PRBSIE) 0 = mask PRBSL interrupt 1 = enable PRBSL interrupt Bit 3: PRBS Detector Bit-Error Interrupt Enable (PBERIE) 0 = mask PBERL interrupt 1 = enable PBERL interrupt Bit 2: Receiver Line-Code Violation Interrupt Enable (RCVIE) 0 = mask RCVL interrupt 1 = enable RCVL interrupt Bit 1: Receiver Loss-of-Clock Lock Interrupt Enable (RLOLIE) 0 = mask RLOLL interrupt 1 = enable RLOLL interrupt Bit 0: Receiver Loss-of-Signal Interrupt Enable (RLOSIE) 0 = mask RLOSL interrupt 1 = enable RLOSL interrupt
21 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 RCV[7] 0
RCVLn Receiver Code-Violation Count Register (Low Byte) 06h, 16h, 26h, 36h 6 RCV[6] 0 5 RCV[5] 0 4 RCV[4] 0 3 RCV[3] 0 2 RCV[2] 0 1 RCV[1] 0 0 RCV[0] 0
Bits 7 to 0: Receiver Code-Violation Counter Register (RCV[7:0]). The full 16-bit RCV[15:0] field spans this register and RCVHn. RCV is an unsigned integer that indicates the line-code violation counter value. RCV is updated with the line-code violation counter value when the RCVUD control bit in the RCR register is toggled low to high. After the RCV register is updated, the line-code violation counter is cleared. The counter operates in two modes, depending on the setting of the ITU bit in the RCR register. See the RCR register description for details about the ITU control bit. Register Name: Register Description: Register Address: Bit Name Default 7 RCV[15] 0 RCVHn Receiver Code-Violation Count Register (High Byte) 07h, 17h, 27h, 37h 6 RCV[14] 0 5 RCV[13] 0 4 RCV[12] 0 3 RCV[11] 0 2 RCV[10] 0 1 RCV[9] 0 0 RCV[8] 0
Bits 7 to 0: Receiver Code-Violation Counter Register (RCV[15:8]). See the RCVLn register description.
22 of 71
DS3251/DS3252/DS3253/DS3254
Register Name: Register Description: Register Address: Bit Name Default 7 T3MOE 0
CACR Clock Adapter Control Register 08h 6 E3MOE 0 5 STMOE 0 4 -- 0 3 -- 0 2 1 AMCSEL[1] AMCSEL[0] 0 0 0 AMCEN 0
Bit 7: T3MCLK Output Enable (T3MOE). When the clock adapter block is configured to synthesize the DS3 master clock, the DS3 master clock can be output on the T3MCLK pin by setting T3MOE=1. This clock can then be used as the transmit clock for neighboring DS3 framers and other components requiring a DS3 clock. This bit should only be set to 1 if the T3MCLK pin is not driven externally. 0 = T3MCLK output driver disabled 1 = T3MCLK output driver enabled Bit 6: E3MCLK Output Enable (E3MOE). When the clock adapter block is configured to synthesize the E3 master clock, the E3 master clock can be output on the E3MCLK pin by setting E3MOE=1. This clock can then be used as the transmit clock for neighboring E3 framers and other components requiring an E3 clock. This bit should only be set to 1 if the E3MCLK pin is not driven externally. 0 = E3MCLK output driver disabled 1 = E3MCLK output driver enabled Bit 5: STMCLK Output Enable (STMOE). When the clock adapter block is configured to synthesize the STS-1 master clock, the STS-1 master clock can be output on the of the STMCLK pin by setting STMOE=1. This clock can then be used as the transmit clock for neighboring SONET framers, mappers and other components requiring an STS-1 clock. This bit should only be set to 1 if the STMCLK pin is not driven externally. 0 = STMCLK output driver disabled 1 = STMCLK output driver enabled Bits 2 to 1: Alternate Master Clock Select (AMCSEL[1:0]). See Section 12 for details. 00 = 19.44 MHz 01 = 38.88 MHz 10 = 77.76 MHz 11 = {unused value} Bit 0: Alternate Master Clock Enable (AMCEN). See Section 12 for details. 0 = alternate master clock mode disabled 1 = alternate master clock mode enabled
23 of 71
DS3251/DS3252/DS3253/DS3254
8. RECEIVER
8.1 Interfacing to the Line
The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the incoming coaxial cable (75W) through a 1:2 step-up transformer. Figure 2-1 shows the arrangement of the transformer and other recommended interface components. Table 14-A specifies the required characteristics of the transformer. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format.
8.2
Optional Preamp
The receiver can be used in monitoring applications, which typically have series resistors with a resistive loss of approximately 20dB. When the RMON input pin is high (hardware mode) or RCR:RMON=1 (CPU bus mode), the receiver compensates for this resistive loss by applying approximately 14dB of flat gain to the incoming signal before sending the signal to the AGC/equalizer block, where additional flat gain is applied as need.
8.3
Automatic Gain Control (AGC) and Adaptive Equalizer
The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in the transmission channel and variations in transmission power. Since the incoming signal also experiences frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically adapts to coaxial cable losses from 0 to 15dB, which translates into 0 to 380 meters (DS3), 0 to 440 meters (E3), or 0 to 360 meters (STS-1) of coaxial cable (AT&T 734A or equivalent). The AGC and the equalizer work simultaneously but independently to supply a signal of nominal amplitude and pulse shape to the clock and data recovery block. The AGC/equalizer block automatically handles direct (0 meters) monitoring of the transmitter output signal.
8.4
Clock and Data Recovery (CDR)
The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock, positive data, and negative data signals. The CDR operates from the LIU's master clock. See Section 12 for more information about master clocks and clock selection. The receiver locks onto the incoming signal using a clock recovery PLL. The status of the PLL lock is indicated in the RLOL status bit in the SR register. The RLOL bit is set when the difference between recovered clock frequency and MCLK frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state of the RLOL status bit can cause an interrupt on the INT pin if enabled to do so by the RLOLIE interruptenable bit in the SRIE register. Note that if the master clock is not present, RLOL is not set.
8.5
Loss-of-Signal (LOS) Detector
The receiver contains analog and digital LOS detectors. The analog LOS detector resides in the AGC/equalizer block. If the incoming signal level is less than a signal level approximately 24dB below nominal, analog LOS (ALOS) is declared. The ALOS signal cannot be directly examined, but when ALOS occurs the AGC/equalizer mutes the recovered data, forcing all zeros out of the data recovery circuitry and causing digital LOS (DLOS), which is indicated by the RLOS pin and the RLOS status bit in the SR register. ALOS clears when the incoming signal level is greater than or equal to a signal level approximately 18 dB below nominal. The digital LOS detector declares DLOS when it detects 175 75 consecutive zeros in the recovered data stream. When DLOS occurs, the receiver asserts the RLOS pin (hardware mode) or the RLOS status bit (CPU bus mode). DLOS is cleared when there are no EXZ occurrences over a span of 175 75 clock periods. An EXZ occurrence is defined as three or more consecutive zeros in the DS3 and STS-1 modes and four or more consecutive zeros in the E3 mode. The RLOS pin and the RLOS status bit are deasserted when the DLOS condition is cleared. In CPU bus mode, a change of the RLOS status bit can cause an interrupt on the INT pin if enabled to do so by the RLOSIE interrupt-enable bit in the SRIE register. The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which asserts RLOS when it counts 175 75 consecutive zeros coming out of the CDR block and clears RLOS when it counts 175 75 consecutive pulse intervals without excessive zero occurrences.
24 of 71
DS3251/DS3252/DS3253/DS3254
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the DLOS detector, as follows: For E3 RLOS Assertion: 1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal level approximately 24 dB below nominal, and mutes the data coming out of the clock and data recovery block. (24 dB below nominal is in the "tolerance range" of G.775, where LOS may or may not be declared.) 2) The DLOS detector counts 175 75 consecutive zeros coming out of the CDR block and asserts RLOS. (175 75 meets the 10 N 255 pulse-interval duration requirement of G.775.) For E3 RLOS Clear: 1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a signal level approximately 18dB below nominal, and enables data to come out of the CDR block. (18dB is in the "tolerance range" of G.775, where LOS may or may not be declared.) 2) The DLOS detector counts 175 75 consecutive pulse intervals without EXZ occurrences and deasserts RLOS. (175 75 meets the 10 N 255 pulse-interval duration requirement of G.775.) The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At STS-1 rates, the time required for the DLOS detector to count 175 75 consecutive zeros falls in the range of 2.3 T 100ms required by ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 175 75 consecutive pulse intervals with no excessive zeros is less than the 125ms-250ms period required by ANSI T1.231 for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software. During LOS, the RCLK output pin is derived from the LIU's master clock. The ALOS detector has a longer time constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first (asserting the RLOS pin or bit), followed by the ALOS detector. When a signal is restored, the DLOS detector does not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the signal rise above a signal level approximately 18dB below nominal.
8.6
Framer Interface Format and the B3ZS/HDB3 Decoder
The recovered data can be output in either binary or bipolar format. To select the bipolar interface format, pull the RBIN pin low (hardware mode) or clear the RBIN configuration bit in the RCR register (CPU bus mode). In bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is buffered and output on the RPOS and RNEG outputs. Received positive-polarity pulses are indicated by RPOS = 1, while negative-polarity pulses are indicated by RNEG = 1. In bipolar interface format, the receiver simply passes on the received data and does not check it for BPV or EXZ occurrences. To select the binary interface format, pull the RBIN pin high (hardware mode) or set the RBIN configuration bit in the RCR register (CPU bus mode). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and output as a binary value on the RDAT pin. Code violations are flagged on the RLCV pin. In the discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates the AMI rule is denoted as V. In DS3 and STS-1 modes, B3ZS decoding is performed. RLCV is asserted during any RCLK cycle where the data on RDAT causes ones of the following code violations:
Hardware mode or ITU bit set to 0 - A BPV immediately preceded by a valid pulse (B, V). - A BPV with the same polarity as the last BPV. - The third zero in an EXZ occurrence. ITU bit set to 1 - A BPV immediately preceded by a valid pulse (B, V). - A BPV with the same polarity as the last BPV.
25 of 71
DS3251/DS3252/DS3253/DS3254
In E3 mode, HDB3 decoding is performed. RLCV is asserted during any RCLK cycle where the data on RDAT causes one of the following code violations:
Hardware mode or ITU bit set to 0 - A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V). - A BPV with the same polarity as the last BPV. - The fourth zero in an EXZ occurrence (only in hardware mode or when ITU = 0). ITU bit set to 1 - A BPV with the same polarity as the last BPV.
When RLCV is asserted to flag a BPV, the RDAT pin outputs a one. The state bit that tracks the polarity of the last BPV is toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not. To support a glueless interface to a variety of neighboring components, the polarity of RCLK can be inverted. Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on these pins on the rising edge of RCLK, pull the RCINV pin high (hardware mode) or set the RCINV configuration bit in the RCR register (CPU bus mode). The RCLK, RPOS/RDAT, and RNEG/RLCV pins can be tri-stated to support protection switching and redundantLIU applications. This tri-stating capability supports system configurations where two or more LIUs are wire-ORed together and a system processor selects one to be active. To tri-state RCLK, RPOS/RDAT, and RNEG/RLCV, assert the RTS pin or the RTS configuration bit in the RCR register.
8.7
Receive Line-Code Violation Counter
The line-code violation counter is always enabled regardless of the settings of the RBIN pin or the RBIN configuration bit. The receiver has an internal 16-bit saturating counter and a 16-bit latch, which the CPU can read as registers RCVH and RCVL. The value of the internal counter is latched into the RCVH/RCVL register and cleared when the receive code-violation counter update bit, RCR:RCVUD, is changed from a zero to a one. The RCVUD bit must be cleared back to a zero before a new update can occur. If there is an LCV increment pulse and an update pulse in the same clock period, the counter is preset to a one rather than cleared so that the LCV is not missed. The counter is incremented when the RLCV pin flags a code violation as described in Section 8.6. The counter saturates at 65,535 (0FFFFh) and does not roll over.
8.8
Receiver Power-Down
To minimize power consumption when the receiver is not being used, assert the RPD configuration bit in the RCR register (CPU bus mode). When the receiver is powered down, the RCLK, RPOS/RDAT, and RNEG/RLCV pins are tri-stated. In addition, the RXP and RXN pins become high impedance.
8.9
Receiver Jitter Tolerance
The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in Table 1-A. See Figure 8-1.
26 of 71
DS3251/DS3252/DS3253/DS3254
Figure 8-1. Receiver Jitter Tolerance
15 STS-1 GR253 10 5
JITTER TOLERANCE (UIP-P)
10
DS3 GR-499 Cat II DS3 GR-499 Cat I
DS325x JITTER TOLERANCE
E3 G.823 1.0 1.5
0.3 0.15 0.1 0.1
30 10 100
300
669 1k
2.3k 10k
22.3k
60k 100k
300k
800k 1M
FREQUENCY (Hz)
9. TRANSMITTER
9.1 Transmit Clock
The clock applied at the TCLK input clocks in data on the TPOS/TDAT and TNEG pins. If the jitter attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be transmission quality (i.e., 20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the transmit path, the signal on TCLK can be jittery and/or periodically gapped, but must still have an average frequency within 20ppm of the nominal line rate. When enabled in the transmit path, the jitter attenuator generates the transmit line clock from the appropriate master clock. The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components. Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample data on the falling edge of TCLK, pull the TCINV pin high (hardware mode) or set the TCINV configuration bit in the TCR register (CPU bus mode).
9.2
Framer Interface Format and the B3ZS/HDB3 Encoder
Data to be transmitted can be input in either binary or bipolar format. To select the binary interface format, pull the TBIN pin high (hardware mode) or set the TBIN configuration bit in the TCR register (CPU bus mode). In binary format, the B3ZS/HBD3 encoder is enabled, and the data to be transmitted is sampled on the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired low. In DS3 and STS-1 modes, the B3ZS/HDB3 encoder operates in the B3ZS mode. In E3 mode the encoder operates in HDB3 mode. To select the bipolar interface format, pull the TBIN pin low (hardware mode) or clear the TBIN configuration bit in the TCR register (CPU bus mode). In bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled on the TPOS and TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses are indicated by TNEG = 1.
9.3
Pattern Generation
The transmitter can generate several patterns internally, including unframed all ones (E3 AIS), 100100..., and DS3 AIS. See Figure 9-2 for the structure of the DS3 AIS signal. The TDSA and TDSB input pins (hardware mode) or the TDSA and TDSB control bits in the GCR register (CPU bus mode) are used to select these patterns. Table 6-G indicates the possible selections.
27 of 71
DS3251/DS3252/DS3253/DS3254
9.4
Waveshaping, Line Build-Out, Line Driver
The waveshaping block converts the transmit clock, positive data, and negative data signals into a single AMI signal with the waveshape required for interfacing to DS3/E3/STS-1 lines. Table 9-A through Table 9-E and Figure 9-1 show the waveform template specifications and test parameters. Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length from 0 to 450ft, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225ft or greater, the TLBO pin (hardware mode) or the TLBO configuration bit in the TCR register (CPU bus mode) should be low. When TLBO is low, output pulses are driven onto the coaxial cable without any preattenuation. For cable lengths less than 225ft, TLBO should be high to enable the LBO circuitry. When TLBO is high, pulses are preattenuated by the LBO circuitry before being driven onto the coaxial cable. The LBO circuitry provides attenuation that mimics the attenuation of 225ft of coaxial cable. The transmitter line driver can be disabled and the TXP and TXN outputs tri-stated by asserting the TTS input or the TTS configuration bit in the TCR register. Powering down the transmitter through the TPD configuration bit in the TCR register (CPU bus mode) also tri-states the TXP and TXN outputs.
9.5
Interfacing to the Line
The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75W) through a 2:1 step-down transformer connected to the TXP and TXN pins. Figure 2-1 shows the arrangement of the transformer and other recommended interface components. Table 14-A specifies the required characteristics of the transformer.
9.6
Transmit Driver Monitor
The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 MCLK cycles, then the monitor activates the TDM output pin (hardware mode or CPU bus mode) or sets the TDM status bit in the SR register and optionally activates the INT output (CPU bus mode). When the transmitter is tri-stated, the transmit driver monitor is also disabled. Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short at a distance less than a few inches (~11 inches for FR4 material) can introduce inverted reflections that reduce the outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM pin and/or TDM status bit. Similarly an open circuit a similar distance away can introduce noninverted reflections that increase the outgoing amplitude above the VTXMAX threshold and thereby activate TDM and/or TDM. Shorts and opens at larger distances away from TXP/TXN can also activate TDM and/or TDM, but this effect is data-pattern dependent.
9.7
Transmitter Power-Down
To minimize power consumption when the transmitter is not being used, assert the TPD configuration bit in the TCR register (CPU bus mode only). When the transmitter is powered down, the TXP and TXN pins are put in a high-impedance state and the transmit amplifiers are powered down.
9.8
Transmitter Jitter Generation (Intrinsic)
The transmitter meets the jitter generation requirements of all applicable standards, with or without the jitter attenuator enabled.
9.9
Transmitter Jitter Transfer
Without the jitter attenuator enabled in the transmit side, the transmitter passes jitter through unchanged. With the jitter attenuator enabled in the transmit side, the transmitter meets the jitter transfer requirements of all applicable telecommunication standards in Table 1-A. See Figure 10-1.
28 of 71
DS3251/DS3252/DS3253/DS3254
Table 9-A. DS3 Waveform Template
TIME (IN UNIT INTERVALS) -0.85 T -0.68 -0.68 T +0.36 0.36 T 1.4 -0.85 T -0.36 -0.36 T +0.36 0.36 T 1.4 NORMALIZED AMPLITUDE EQUATION UPPER CURVE 0.03 0.5 {1 + sin[(p / 2)(1 + T / 0.34)]} + 0.03 -1.84(T - 0.36) 0.08 + 0.407e LOWER CURVE -0.03 0.5 {1 + sin[(p / 2)(1 + T / 0.18)]} - 0.03 -0.03
Governing Specifications: ANSI T1.102 and Bellcore GR-499.
Table 9-B. DS3 Waveform Test Parameters and Limits
PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Unframed All-Ones Power Level at 22.368MHz Unframed All-Ones Power Level at 44.736MHz Pulse Imbalance of Isolated Pulses SPECIFICATION 44.736Mbps (20ppm) B3ZS Coaxial cable (AT&T 734A or equivalent) At the end of 0 to 450ft of coaxial cable 75W (1%) resistive Between 0.36V and 0.85V An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the curves listed in Table 9-A. Between -1.8dBm and +5.7dBm At least 20dB less than the power measured at 22.368MHz Ratio of positive and negative pulses must be between 0.90 and 1.10.
Table 9-C. STS-1 Waveform Template
TIME (IN UNIT INTERVALS) -0.85 T -0.68 -0.68 T +0.26 0.26 T 1.4 -0.85 T -0.36 -0.36 T +0.36 0.36 T 1.4 NORMALIZED AMPLITUDE EQUATIONS UPPER CURVE 0.03 0.5 {1 + sin[(p / 2)(1 + T / 0.34)]} + 0.03 -2.4(T - 0.26) 0.1 + 0.61e LOWER CURVE -0.03 0.5 {1 + sin[(p / 2)(1 + T / 0.18)]} - 0.03 -0.03
Governing Specifications: Bellcore GR-253 and Bellcore GR-499 and ANSI T1.102.
Table 9-D. STS-1 Waveform Test Parameters and Limits
PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Unframed All-Ones Power Level at 25.92MHz Unframed All-Ones Power Level at 51.84MHz SPECIFICATION 51.840Mbps (20ppm) B3ZS Coaxial cable (AT&T 734A or equivalent) At the end of 0 to 450ft of coaxial cable 75W (1%) resistive 0.800V nominal (not covered in specs) An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the curved listed in Table 9-C. Between -1.8dBm and +5.7dBm At least 20dB less than the power measured at 25.92MHz.
29 of 71
DS3251/DS3252/DS3253/DS3254
Table 9-E. E3 Waveform Test Parameters and Limits
PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Ratio of the Amplitudes of Positive and Negative Pulses at the Center of the Pulse Interval Ratio of the Widths of Positive and Negative Pulses at the Nominal Half Amplitude SPECIFICATION 34.368Mbps (20ppm) HDB3 Coaxial cable (AT&T 734A or equivalent) At the transmitter 75W (1%) resistive 1.0V (nominal) An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the template shown in Figure 9-1. 0.95 to 1.05 0.95 to 1.05
Figure 9-1. E3 Waveform Template
1.2 1.1 1.0 0.9
17
OUTPUT LEVEL (V)
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2
8.65 G.703 E3 TEMPLATE 12.1
24.5 29.1
TIME (ns)
30 of 71
DS3251/DS3252/DS3253/DS3254
Figure 9-2. DS3 AIS Structure
M1 Subframe 84 Info F1 X1 Bits (1) (1) M2 Subframe 84 X2 Info F1 (1) Bits (1) M3 Subframe 84 Info F1 P1 Bits (1) (0) M4 Subframe 84 P2 Info F1 (0) Bits (1) M5 Subframe 84 Info F1 M1 Bits (1) (0) M6 Subframe 84 M2 Info F1 (1) Bits (1) M7 Subframe 84 Info F1 M3 Bits (1) (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits C1 (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits F2 (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits C2 (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits F3 (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits C3 (0) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits F4 (1) 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits 84 Info Bits
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
C1 (0)
F2 (0)
C2 (0)
F3 (0)
C3 (0)
F4 (1)
Note 1: X1 is transmitted first. Note 2: The 84 info bits contain the repetitive sequence 1010..., where the first 1 in the sequence immediately follows each X, P, F, C, or M bit.
31 of 71
DS3251/DS3252/DS3253/DS3254
10.
JITTER ATTENUATOR
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can be disabled. The TJA and RJA pins (hardware mode) or the TCR:TJA and RCR:RJA control bits (CPU bus mode) specify how the jitter attenuator is used. Setting TJA = RJA = 0 disables the jitter attenuator. To use the jitter attenuator in the receive path, set RJA = 1 (with TJA = 0). To use it in the transmit path, set TJA = 1. Figure 10-1 shows the minimum jitter attenuation for the device when the jitter attenuator is enabled. Figure 10-1 also shows the receive jitter transfer when the jitter attenuator is disabled. The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter amplitudes. In hardware mode, only 16-bit and 32-bit FIFO depths are available. See Table 6-I. In CPU bus mode, control bits TCR:JAL[1:0] set the FIFO depth to 16, 32, 64, or 128 bits. The jitter attenuator requires a transmission-quality master clock (i.e., 20ppm frequency accuracy and low jitter). When enabled in the receive path, the JA can obtain its master clock from the appropriate MCLK pin, from the clock adapter block, or from the TCLK pin. When enabled in the transmit path, the JA can take its master clock from the MCLK pin or from the clock adapter block, but not from the TCLK pin. The CDR block also uses the selected master clock. See Section 12 for more information about master clocks and clock selection. The JA has a loop bandwidth of master_clock 2,058,874 (see corner frequencies in Figure 10-1). The JA attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower frequencies to pass through relatively unaffected. In CPU bus mode the jitter attenuator indicates the fill status of its FIFO buffer in the JAFL (JA full) and JAEL (JA empty) status bits in the SRL register. The JA sets the JAFL bit to indicate that its buffer is full. When the buffer becomes full, the JA momentarily increases the frequency of the read clock by 6250 ppm to avoid buffer overflow and consequent data loss. In a similar manner, the JA sets the JAEL bit to indicate that its buffer is empty. When the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by 6250 ppm to avoid buffer underflow and consequent data errors. During these momentary frequency adjustments, jitter is passed through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is large enough to cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to indicate that data errors have occurred.
32 of 71
DS3251/DS3252/DS3253/DS3254
Figure 10-1. Jitter Attenuation/Jitter Transfer
21.7 Hz (DS3) 16.7 Hz (E3) 25.2 Hz (STS-1) 0
DS3 [GR-253 (1999)] CATEGORY I DS3 [GR-499 (1995)] CATEGORY I STS-1 [GR-253 (1999)] CATEGORY II
27Hz 40Hz
1k
40k 59.6k
>150k DS325x TYPICAL RECEIVER JITTER TRANSFER WITH JITTER ATTENUATOR DISABLED
JITTER ATTENUATION (dB)
-10
DS325x DS3/E3/STS-1 MINIMUM JITTER ATTENUATION WITH JITTER ATTENUATOR ENABLED
E3 [TBR24 (1997)]
DS3 [GR-499 (1999)] CATEGORY II
-20
-30
10
100
1k
10k FREQUENCY (Hz)
100k
1M
33 of 71
DS3251/DS3252/DS3253/DS3254
11.
DIAGNOSTICS
11.1 PRBS Generator and Detector
Each LIU has built-in pseudorandom bit sequence (PRBS) generator and detector circuitry for physical layer 15 23 testing. The device generates and detects unframed 2 - 1 (DS3 or STS-1) or 2 - 1 PRBS, according to the ITU O.151 specification. To transmit a PRBS pattern, pull the TDSA and TDSB pins high (hardware mode) or set configuration bits TDSA and TDSB in the GCR register (CPU bus mode). As Table 6-G shows, the PRBS 15 23 generator automatically generates 2 - 1 for DS3 and STS-1 modes and 2 - 1 for E3 mode. The PRBS detector, which is always enabled (Table 6-H), reports its status through the PRBS output pin (hardware and CPU bus modes) or through the PRBS and PBER status bits (CPU bus mode). When the PRBS detector is out of synchronization, the PRBS pin is forced high. When the detector syncs to an incoming PRBS pattern, the PRBS pin is driven low, then pulses high, synchronous with RCLK, for each bit error detected. See Figure 11-1 and Figure 11-2 for details. In CPU bus mode, the PRBS status bit is set to one when the detector is out of synchronization and set to zero when the detector syncs to an incoming PRBS pattern. A change of state of the PRBS bit sets the PRBSL bit in the SRL register and can also cause an interrupt on the INT pin if the PRBSIE bit in the SRIE register is set to one. A pattern bit error set the PBERL bit in the SRL register and can also cause an interrupt if the PBERIE bit in the SRIE register is set to one.
Figure 11-1. PRBS Output with Normal RCLK Operation
RCINV = 0
RCLK
PRBS PRBS DETECTOR IS NOT IN SYNC PRBS DETECTOR IS IN SYNC; THE PRBS PIN PULSES HIGH FOR EACH BIT ERROR DETECTED
Figure 11-2. PRBS Output with Inverted RCLK Operation
RCINV = 1
RCLK
PRBS PRBS DETECTOR IS NOT IN SYNC PRBS DETECTOR IS IN SYNC; THE PRBS PIN PULSES HIGH FOR EACH BIT ERROR DETECTED
11.2 Loopbacks
Each LIU has three internal loopbacks. See Figure 4-1 and Figure 4-2. The LLB and RLB pins (hardware mode) or LLB and RLB control bits in the GCR register (CPU bus mode) enable these loopbacks. When LLB = RLB = 0, loopbacks are disabled. Setting RLB = 1 with LLB = 0 enables remote loopback, which loops recovered clock and data back through the LIU transmitter. During remote loopback, recovered clock and data are output on RCLK, RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored. Setting LLB = 1 with RLB = 0 enables analog local loopback, which loops the outgoing transmit signal back to the receiver's analog front end. Setting LLB = RLB = 1 enables digital local loopback, which loops digital transmit clock and data back to the receiver's digital circuitry, including the LOS detector, the B3ZS/HDB3 decoder, and the PRBS detector. When either of the local loopbacks is enabled, the transmit signal is output normally on TXP/TXN, but the received signal on RXP/RXN is ignored.
34 of 71
DS3251/DS3252/DS3253/DS3254
12. CLOCK ADAPTER
The clock adapter block generates all required clock rates from a single input clock. If a transmission-quality clock of one line rate (DS3, E3 or STS-1) is present, the clock adapter can synthesize transmission-quality clocks at the other two line rates. Both input clocks and synthesized clocks are then available to be used as master clocks by the CDRs and jitter attenuators. In hardware mode the clock adapter is entirely controlled by the T3MCLK, E3MCLK and STMCLK pins. See the pins descriptions for those pins in Table 6-A. In CPU bus mode additional clock adapter control options are available in the CACR register. When control bit AMCEN is set to 1, the clock adapter block is configured for alternate master clock mode. In this mode, the clock adapter expects to receive a clock whose frequency is specified by the AMCSEL[1:0] control bits rather than a DS3, E3 or STS-1 clock. Valid input frequencies are 19.44 MHz, 38.88 MHz and 77.76 MHz. In alternate master clock mode the clock adapter can synthesize up to two clock rates (DS3, E3 or STS-1). To synthesize DS3 and E3 clocks, the alternate master clock should be applied to the STMCLK pin. To synthesize DS3 and STS-1 clocks, the clock should be applied to the E3MCLK pin. To synthesize E3 and STS-1 clocks, the clock should be applied to the T3MCLK pin. The device can be powered up with an alternate clock applied to one of the MCLK pins, even though the power-on default values of AMCEN and AMCSEL[1:0] may not match the applied clock. Once these control bits are properly set after power-up, the clock adapter begins to synthesize the proper master clocks, and the device as a whole functions normally. CPU bus mode also provides the ability to output synthesized master clocks on the T3MCLK, E3MCLK and STMCLK pins for use by neighboring framers, mappers and other components. To output the synthesized DS3 master clock on T3MCLK, set CACR:T3MOE=1. To output the synthesized E3 master clock on E3MCLK, set CACR:E3MOE=1. To output the synthesized STS-1 master clock on STMCLK, set CACR:STMOE=1.
13. RESET LOGIC
There are four sources for reset: an internal power-on reset (POR) circuit, the reset pin RST, the JTAG reset pin JTRST, and the RST bit in each LIU's global configuration register (GCR). The chip is divided into three zones for reset: the digital logic, the analog circuits, and the JTAG logic. The digital logic includes the status and control registers, the B3ZS/HDB3 encoder and decoder, the PRBS generator and detector, and the LOS detect logic. The analog circuits include clock and data recovery, jitter attenuator, and transmit waveform generation. The JTAG logic consists of the common boundary scan controller and the boundary scan cells at each pin. The POR circuit resets the digital logic, analog circuits, and JTAG logic zones. The RST pin resets the digital logic and the analog circuits but not the JTAG logic. The JTRST pin resets only the JTAG logic. Each LIU's RST register bit resets the digital logic for that LIU, including resetting the LIU's registers to the default state (except for the RST bit itself). The POR signal and RST pin require an active master clock source for the LIU to properly reset.
35 of 71
DS3251/DS3252/DS3253/DS3254
14. TRANSFORMERS
Table 14-A. Transformer Characteristics
PARAMETER Turns Ratio Bandwidth 75W Primary Inductance Leakage Inductance Interwinding Capacitance Isolation Voltage VALUE 1:2ct 2% 0.250MHz to 500MHz (typ) 19mH (min) 0.150mH (max) 10pF (max) 1500VRMS (min)
Table 14-B. Recommended Transformers
MANUFACTURER NO. OF TRANSFORMERS 1 Pulse Engineering 1 8 1 Halo Electronics 1 TD07-0206NE 0C to +70C PART PE-65968 PE-65969 T3049 TG07-0206NS TEMP RANGE 0C to +70C 0C to +70C 0C to +70C 0C to +70C PIN-PACKAGE/ SCHEMATIC 6 SMT LS-1/C 6 Thru-Hole LC-1/C 32 SMT YB/1 6 SMT SMD/B 6 DIP DIP/B
Note: Table subject to change. Industrial temperature range and multiport transformers are also available. Contact the manufacturers for details at www.pulseeng.com and www.haloelectronics.com.
36 of 71
DS3251/DS3252/DS3253/DS3254
15. CPU INTERFACES
When the HW pin is logic 0 the device is in CPU bus mode. The default CPU interface is 8-bit parallel.
15.1
Parallel Interface
When the device is in CPU bus mode, by default it presents a generic 8-bit parallel microprocessor interface. When the MOT pin is logic 1, the interface is Motorola-style with CS, R/W, and DS control lines. When MOT = 0, the interface is Intel-style with CS, RD, and WR control lines. In both styles, the interface supports both multiplexed and nonmultiplexed operation. For multiplexed operation, wire A[5:0] to D[5:0], wire D[7:0] to the CPU's multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the micro. For nonmultiplexed operation, wire ALE high and wire A[5:0] and D[7:0] to the appropriate pins on the micro. See Table 17-H, Figure 17-3 and Figure 17-4 for parallel interface timing diagrams and parameters.
15.2
SPI Interface
When the MOT, RD, and WR pins are all low, the device presents an SPI interface on the CS, SCLK, SDI, and SDO pins. SPI is a widely-used master/slave bus protocol that allows a master device and one or more slave devices to communicate over a serial bus. The DS325x is always a slave device. Masters are typically microprocessors, ASICs or FPGAs. Data transfers are always initiated by the master device, which also generates the SCLK signal. The DS325x receives serial data on the SDI pin and transmits serial data on the SDO pin. SDO is high-impedance except when the DS325x is transmitting data to the bus master. Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus transactions. the CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge. See Figure 15-1. Bit Order. The control byte and all data bytes are transmitted MSB first on both SDI and SDO. Device Selection. Each SPI device has its own chip-select line. To select the DS325x, pull its CS pin low. Control Byte. After CS is pulled low, the bus master transmits the control byte during the first eight SCLK cycles. The control byte has the form R/W A5 A4 A3 A2 A1 A0 BURST, where A[5:0] is the register address, R/W is the data direction bit (1 = read, 0 = write), and BURST is the burst bit (1 = burst access, 0 = single-byte access). In the discussion that follows, a control byte with R/W = 1 is a read control byte, while a control byte with R/W = 0 is a write control byte. Single-Byte Writes. See Figure 15-2. After CS goes low, the bus master transmits a write control byte with BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS high. Single-Byte Reads. See Figure 15-2. After CS goes low, the bus master transmits a read control byte with BURST = 0. The DS325x then responds with the requested data byte. The bus master then terminates the transaction by pulling CS high. Burst Writes. See Figure 15-2. After CS goes low, the bus master transmits a write control byte with BURST = 1 followed by the first data byte to be written. The DS325x receives the first data byte on SDI, writes it to the specified register, increments its internal address register, and prepares to receive the next data byte. If the master continues to transmit, the DS325x continues to write the data received and increment its address counter. After the address counter reaches FFh it rolls over to address 00h and continues to increment. Burst Reads. See Figure 15-2. After CS goes low, the bus master transmits a read control byte with BURST = 1. The DS325x then responds with the requested data byte on SDO, increments its address counter, and pre-fetches the next data byte. If the bus master continues to demand data, the DS325x continues to provide the data on SDO, increment its address counter, and pre-fetch the following byte. After the address counter reaches FFh it rolls over to address 00h and continues to increment.
37 of 71
DS3251/DS3252/DS3253/DS3254
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by pulling CS high. In response to early terminations, the DS325x resets its SPI interface logic and waits for the start of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data byte, the current data byte is not written. Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the DS325x is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support this option, the bus master must not drive the SDI/SDO line when the DS325x is transmitting. AC Timing. See Table 17-I and Figure 17-5 for AC timing specifications for the SPI interface.
Figure 15-1. SPI Clock Polarity and Phase Options
CS
SCK CPOL = 0, CPHA = 0 SCK CPOL = 0, CPHA = 1 SCK CPOL = 1, CPHA = 0 SCK CPOL = 1, CPHA = 1 SDI/SDO MSB 6 5 4 3 2 1 LSB
CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES)
38 of 71
DS3251/DS3252/DS3253/DS3254
Figure 15-2. SPI Bus Transactions
Single-Byte Write
CS SDI SDO R/W Register Address Burst
0 (Write)
Data Byte
0 (single-byte)
Single-Byte Read
CS SDI SDO R/W Register Address Burst
1 (Read) 0 (single-byte)
Data Byte
Burst Write
CS SDI SDO R/W Register Address Burst Data Byte 1
0 (Write) 1 (burst)
Data Byte N
Burst Read
CS SDI SDO R/W Register Address Burst
1 (Read) 1 (burst)
Data Byte 1
Data Byte N
39 of 71
DS3251/DS3252/DS3253/DS3254
16.
16.1
JTAG TEST ACCESS PORT AND BOUNDARY SCAN
JTAG Description
The DS325x LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. Figure 16-1 features a block diagram. The LIUs contain the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture: Test Access Port (TAP) TAP Controller Instruction Register Bypass Register Boundary Scan Register Device Identification Register
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins can be found in Table 6-A. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.
16.2
JTAG TAP Controller State Machine Description
This section discusses the operation of the TAP controller state machine. The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK. Each of the states denoted in Figure 16-2 are described in the following pages. Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The instruction register contains the IDCODE instruction. All system logic on the device operates normally. Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The instruction and test registers remain idle. Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the SelectIR-SCAN state. Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or to the Exit1-DR state if JTMS is high. Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO and shifts data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the current instruction is not placed in the serial path, it maintains its previous state. Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state, which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR state. Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on JTCLK with JTMS high puts the controller in the Exit2-DR state. Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR state. Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of the test registers into the data output latches. This prevents changes at the parallel output because of changes in the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller enters the Select-DR-Scan state. Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan
40 of 71
DS3251/DS3252/DS3253/DS3254
sequence for the instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the Test-Logic-Reset state. Capture-IR. The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state. Shift-IR. In this state, the instruction register's shift register is connected between JTDI and JTDO and shifts data one stage for every rising edge of JTCLK toward the serial output. The parallel register and the test registers remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-IR state. A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state, while moving data one stage through the instruction shift register. Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process. Pause-IR. Shifting of the instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge on JTCLK. Exit2-IR. A rising edge on JTCLK with JTMS high puts the controller in the Update-IR state. The controller loops back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state. Update-IR. The instruction shifted into the instruction shift register is latched into the parallel output on the falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller enters the Select-DR-Scan state.
Figure 16-1. JTAG Block Diagram
BOUNDARY SCAN REGISTER IDENTIFICATION REGISTER
BYPASS REGISTER
INSTRUCTION REGISTER
SELECT
TEST ACCESS PORT CONTROLLER
TRI-STATE
10k JTDI
10k JTMS JTCLK
10k JTRST JTDO
MUX
41 of 71
DS3251/DS3252/DS3253/DS3254
Figure 16-2. JTAG TAP Controller State Machine
Test-Logic-Reset 1 0 1 Select DR-Scan 0 1 Capture-DR 0 Shift-DR 0 1 Exit1- DR 0 Pause-DR 1 0 Exit2-DR 1 Update-DR 1 0 1 0 1 1 Exit1-IR 0 Pause-IR 1 Exit2-IR 1 Update-IR 0 1 1 Capture-IR 0 Shift-IR 0 1 Select IR-Scan 0 1
Run-Test/Idle 0
0
0
16.3
JTAG Instruction Register and Instructions
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage toward the serial output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the UpdateIR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction parallel output. Table 16-A shows the instructions supported by the DS325x and their respective operational binary codes.
Table 16-A. JTAG Instruction Codes
INSTRUCTIONS SAMPLE/PRELOAD BYPASS EXTEST CLAMP HIGHZ IDCODE SELECTED REGISTER Boundary Scan Bypass Boundary Scan Bypass Bypass Device Identification INSTRUCTION CODES 010 111 000 011 100 001
42 of 71
DS3251/DS3252/DS3253/DS3254
SAMPLE/PRELOAD. SAMPLE/RELOAD is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register without interfering with the device's normal operation by using the Capture-DR state. SAMPLE/PRELOAD also allows the DS325x to shift data into the boundary scan register through JTDI using the Shift-DR state. EXTEST. EXTEST allows testing of the interconnections to the device. When the EXTEST instruction is latched in the instruction register, the following actions occur. Once enabled through the Update-IR state, the parallel outputs of the digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The Capture-DR samples all digital inputs into the boundary scan register. BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device's normal operation. IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the identification test register is selected. The device identification code is loaded into the identification register on the rising edge of JTCLK, following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially through JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register's parallel output. HIGHZ. All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI and JTDO. CLAMP. All digital output pins output data from the boundary scan parallel output while connecting the bypass register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.
Table 16-B. JTAG ID Code
PART DS3251 DS3252 DS3253 DS3254 REVISION Consult factory Consult factory Consult factory Consult factory DEVICE CODE 0000000000101100 0000000000101101 0000000000101110 0000000000101111 MANUFACTURER CODE 00010100001 00010100001 00010100001 00010100001 REQUIRED 1 1 1 1
16.4
JTAG Test Registers
IEEE 1149.1 requires a minimum of two test registers--the bypass register and the boundary scan register. An optional test register, the identification register, has been included in the device design. It is used with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller. Bypass Register. This is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions, which provide a short path between JTDI and JTDO. Boundary Scan Register. This register contains a shift register path and a latched parallel output for control cells and digital I/O cells. DS325x BSDL files are available at www.maxim-ic.com/TechSupport/telecom/bsdl.htm. Identification Register. This register contains a 32-bit shift register and a 32-bit latched parallel output. It is selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.
43 of 71
DS3251/DS3252/DS3253/DS3254
17.
ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
Voltage Range on Any Lead with Respect to VSS (except VDD)....................................................-0.3V to +5.5V Supply Voltage Range (VDD) with Respect to VSS....................................................................-0.3V to +3.63V Ambient Operating Temperature Range................................................................................-40C to +85C Junction Operating Temperature Range..............................................................................-40C to +125C Storage Temperature Range.............................................................................................-55C to +125C Soldering Temperature...................................................................See IPC/JEDEC J-STD-020 Specification
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device. Ambient operating temperature range when device is mounted on a four-layer JEDEC test board with no airflow. Note: The typical values listed in Tables 17-A through 17-J are not production tested.
Table 17-A. Recommended DC Operating Conditions
(TA = -40C to +85C) PARAMETER Supply Voltage Logic 1, All Other Input Pins Logic 0, All Other Input Pins SYMBOL VDD VIH VIL CONDITIONS MIN 3.135 2.0 -0.3 TYP 3.3 MAX 3.465 5.5 +0.8 UNITS V V V
Table 17-B. DC Characteristics
(VDD = 3.3V 5%, TA = -40C to +85C.) PARAMETER Supply Current (Note 1) SYMBOL IDD CONDITIONS DS3251 DS3252 DS3253 DS3254 DS3251 DS3252 DS3253 DS3254 DS325x (Note 2) MIN TYP 80 150 220 290 60 110 160 210 35 7 (Note 3) (Note 3) -50 -10 2.4 0 MAX 120 200 280 360 100 160 220 280 50 10 +10 +10 VDD 0.4 UNITS mA
Supply Current, Transmitters Tri-Stated (All TTSn Low) (Note 2) Power-Down Current (All TPD, RPD Control Bits High) Lead Capacitance Input Leakage, All Other Input Pins Output Leakage (when High-Z) Output Voltage (IO = -4.0mA) Output Voltage (IO = +4.0mA)
Note 1: Note 2: Note 3:
IDDTTS
mA
IDDPD CIO IIL ILO VOH VOL
mA pF mA mA V V
TCLKn = STMCLK = 51.84MHz; TXPn/TXNn driving all ones into 75W resistive loads; analog loopback enabled; all other inputs at VDD or grounded; all other outputs open. TCLKn = STMCLK = 51.84MHz; other inputs at VDD or grounded; digital outputs left open circuited. 0V < VIN < VDD for all other digital inputs.
44 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-C. Framer Interface Timing
(VDD = 3.3V 5%, TA = -40C to +85C.) (Figure 17-1 and Figure 17-2) PARAMETER RCLK/TCLK Clock Period RCLK Duty Cycle TCLK Duty Cycle MCLK Duty Cycle TPOS/TDAT, TNEG to TCLK Setup Time TPOS/TDAT, TNEG Hold Time RCLK to RPOS/RDAT, RNEG/RLCV, and PRBS Value Change RCLK Rise and Fall Time TCLK Rise and Fall Time
Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9:
SYMBOL t1 t2/t1, t3/t1 t2/t1, t3/t1 t2/t1, t3/t1 t4 t5 t6 t7 t8
CONDITIONS (Note 1) (Note 2) (Note 3) (Notes 4, 5) (Note 5) (Note 5) (Notes 5, 6) (Notes 5, 6) (Notes 4, 5, 7) (Notes 5, 8) (Notes 5, 9)
MIN
TYP 22.4 29.1 19.3
MAX
UNITS ns
45 30 30 2 2 2
50
55 70 70
% % % ns ns
6 3 5 5
ns ns ns
DS3 mode. E3 mode. STS-1 mode. Outputs loaded with 25pF, measured at 50% threshold. Not tested during production test. When TCINV = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCINV = 1, TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. When RCINV = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCINV = 1, RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK. Outputs loaded with 25pF, measured between VOL (max) and VOH (min). Measured between VIL (max) and VIH (min).
45 of 71
DS3251/DS3252/DS3253/DS3254
Figure 17-1. Transmitter Framer Interface Timing Diagram
t1 t2 TCLK (NORMAL) t3
TCLK (INVERTED) t8 t4 t5
TPOS/TDAT, TNEG
Figure 17-2. Receiver Framer Interface Timing Diagram
t1 t2 t3
RCLK (NORMAL)
RCLK (INVERTED) t7 RPOS/RDAT, RNEG/RLCV
t6
46 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-D. Receiver Input Characteristics--DS3 and STS-1 Modes
(VDD = 3.3V 5%, TA = -40C to +85C.) PARAMETER Receive Sensitivity (Length of Cable) Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2) Input Pulse Amplitude, RMON = 0 (Notes 2, 3) Input Pulse Amplitude, RMON = 1 (Note 2, 3) Analog LOS Declare, RMON = 0 (Note 4) Analog LOS Clear, RMON = 0 (Note 4) Analog LOS Declare, RMON = 1 (Note 4) Analog LOS Clear, RMON = 1 (Note 4) Intrinsic Jitter Generation (Note 2)
Note 1:
MIN 900
TYP 1200 10
MAX
UNITS ft
1000 200 -24 -21 -38 -35 0.03
mVpk mVpk dB dB dB dB UIP-P
Note 2: Note 3: Note 4:
An interfering signal (215 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325x receiver. This spec indicates the lowest signal-to-noise ratio that results in a bit error ratio 10-9. Not tested during production test. Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Figure 2-1). During measurement, incoming data traffic is unframed 215 - 1 PRBS. With respect to nominal 800mVpk signal.
Table 17-E. Receiver Input Characteristics--E3 Mode
(VDD = 3.3V 5%, TA = -40C to +85C.) PARAMETER Receive Sensitivity (Length of Cable) Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2) Input Pulse Amplitude, RMON = 0 (Notes 2, 3) Input Pulse Amplitude, RMON = 1 (Notes 2, 3) Analog LOS Declare, RMON = 0 (Note 4) Analog LOS Clear, RMON = 0 (Note 4) Analog LOS Declare, RMON = 1 (Note 4) Analog LOS Clear, RMON = 1 (Note 4) Intrinsic Jitter Generation (Note 2)
Note 1:
MIN 900
TYP 1200 12
MAX
UNITS ft mVpk mVpk dB dB dB dB UIP-P
1300 260 -24 -21 -38 -35 0.03
Note 2: Note 3: Note 4:
An interfering signal (223 - 1 PRBS, HDB3 encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325x receiver. This spec indicates the lowest signal-to-noise ratio that results in a bit error ratio 10-9. Not tested during production test. Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Figure 2-1). During measurement, incoming data traffic is unframed 223 - 1 PRBS. With respect to nominal 1000mVpk signal.
47 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-F. Transmitter Output Characteristics--DS3 and STS-1 Modes
(VDD = 3.3V 5%, TA = -40C to +85C.) PARAMETER DS3 Output Pulse Amplitude, TLBO = 0 (Note 1) DS3 Output Pulse Amplitude, TLBO = 1 (Note 1) STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1) STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1) Ratio of Positive and Negative Pulse-Peak Amplitudes DS3 Power Level at 22.368MHz (Note 2) DS3 Power Level at 44.736MHz vs. Power Level at 22.368MHz (Note 2) Intrinsic Jitter Generation (Note 3) Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 0 Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 1 Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 0 Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 1
Note 1: Note 2: Note 3:
MIN 700 520 700 520 0.9 -1.8
TYP 800 700 800 700
MAX 900 800 1100 850 1.1 +5.7 -20 0.05
UNITS mVpk mVpk mVpk mVpk dBm dB UIP-P mVpk mVpk mVpk mVpk
0.02 550 500 1050 800
Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 2-1). Unframed all ones output signal, 3 kHz bandwidth, cable length 225 feet to 450 feet. Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested during production test.
Table 17-G. Transmitter Output Characteristics--E3 Mode
(VDD = 3.3V 5%, TA = -40C to +85C.) PARAMETER Output Pulse Amplitude (Note 1) Pulse Width Ratio of Positive and Negative Pulse Amplitudes (at Centers of Pulses) Ratio of Positive and Negative Pulse Widths (at Nominal Half Amplitude) Intrinsic Jitter Generation (Note 2) Transmit Driver Monitor Minimum Threshold (VTXMIN) Transmit Driver Monitor Maximum Threshold (VTXMAX)
Note 1: Note 2:
MIN 900 0.95 0.95
TYP 1000 14.55
MAX 1100 1.05 1.05 0.05
UNITS mVpk ns
0.02 750 1250
UIP-P mVpk mVpk
Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 2-1). Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested during production test.
48 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-H. Parallel CPU Interface Timing
(VDD = 3.3V 5%, TA = -40C to +85C.) (Figure 17-3 and Figure 17-4) PARAMETER Setup Time for A[5:0] Valid to CS Active (Notes 1, 2) Setup Time for CS Active to RD, WR, or DS Active Delay Time from RD or DS Active to D[7:0] Valid Hold Time from RD or WR or DS Inactive to CS Inactive Delay from CS or RD or DS Inactive to D[7:0] Invalid or TriState (Note 3) Wait Time from WR or DS Active to Latch D[7:0] D[7:0] Setup Time to WR or DS Inactive D[7:0] Hold Time from WR or DS Inactive A[5:0] Hold Time from WR or RD or DS Inactive RD, WR, or DS Inactive Time Muxed Address Valid to ALE Falling (Note 4) Muxed Address Hold Time (Note 4) ALE Pulse Width (Note 4) Setup Time for ALE High or Muxed Address Valid to CS Active (Note 4)
Note 1: Note 2: Note 3: Note 4:
SYMBOL t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
MIN 0 0 0 2 65 10 2 5 75 10 10 30 0
TYP
MAX
65 20
UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns
D[7:0] loaded with 50pF when tested as outputs. If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest TCLK gap. Not tested during production test. In nonmultiplexed bus applications (Figure 17-3), ALE should be wired high. In multiplexed bus applications (Figure 17-4), A[5:0] should be wired to D[5:0] and the falling edge of ALE latches the address.
49 of 71
DS3251/DS3252/DS3253/DS3254
Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed)
INTEL READ CYCLE
t9
A[5:0]
ADDRESS VALID
D[7:0]
DATA VALID
t5
WR
t1
CS
t2 t3 t4 t10
RD
INTEL WRITE CYCLE
t9
A[5:0]
ADDRESS VALID
D[7:0]
t7 t8
RD
t1
CS
t2 t6 t4 t10
WR
50 of 71
DS3251/DS3252/DS3253/DS3254
Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed)(continued)
MOTOROLA READ CYCLE
t9
A[5:0]
ADDRESS VALID
D[7:0]
DATA VALID
t5
R/W
t1
CS
t2 t3 t4 t10
DS
MOTOROLA WRITE CYCLE
t9
A[5:0] D[7:0]
ADDRESS VALID
t7
t8
R/W
t1
CS
t2 t6 t4 t10
DS
51 of 71
DS3251/DS3252/DS3253/DS3254
Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed)
INTEL READ CYCLE
t13
ALE
t11
ADDRESS VALID
t12
A[5:0] D[7:0]
t14 t14
DATA VALID
t5
WR
CS
t2 t3 t4 t10
RD
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST. NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A[5:0] BEFORE RD GOES LOW.
INTEL WRITE CYCLE
t13
ALE
t11
ADDRESS VALID
t12
A[5:0]
t14
D[7:0]
t14 t7 t8
RD CS
t2 t6 t4 t10
WR
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
52 of 71
DS3251/DS3252/DS3253/DS3254
Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed) (continued)
MOTOROLA READ CYCLE
t13
ALE
t11
ADDRESS VALID
t12
A[5:0]
t14
D[7:0]
t14
DATA VALID
t5
R/W
CS
t2 t3 t4 t10
DS
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST. NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A[5:0] BEFORE RD GOES LOW.
MOTOROLA WRITE CYCLE
t13
ALE A[5:0]
t11
ADDRESS VALID
t12
t14
D[7:0]
t14 t7 t8
R/W
CS
t2 t6 t4 t10
DS
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
53 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-I. SPI Interface Timing
(VDD = 3.3V 5%, TA = -40C to +85C.) (Figure 17-5) PARAMETER (Note 1) SCLK Frequency SCLK Cycle Time CS Setup to First SCLK Edge CS Hold time After Last SCLK Edge SCLK High Time SCLK Low Time SDI Data Setup Time SDI Data Hold Time SDO Enable Time (High-Impedance to Output Active) SDO Disable Time (Output Active to High-Impedance) SDO Data Valid Time SDO Data Hold Time After Update SCLK Edge
Note 1: All timing is specified with 100pF load on all SPI pins.
SYMBOL fBUS tCYC tSUC tHDC tCLKH tCLKL tSUI tHDI tEN tDIS tDV tHDO
MIN 100 15 15 50 50 5 15 0
TYP
MAX 10
25 40 5
UNITS MHz ns ns ns ns ns ns ns ns ns ns ns
Figure 17-5. SPI Interface Timing Diagram
CPHA = 0
CS tSUC SCLK, CPOL=0 SCLK, CPOL=1 tSUI SDI SDO tEN tHDO tCYC tCLKL tCLKH tCLKL tHDI tCLKH tHDC
tDV
tDIS
CPHA = 1
CS tSUC SCLK, CPOL=0 SCLK, CPOL=1 tCYC tCLKL tCLKH tCLKL tSUI SDI SDO tEN tHDO tCLKH tHDI tDV tDIS tHDC
54 of 71
DS3251/DS3252/DS3253/DS3254
Table 17-J. JTAG Interface Timing
(VDD = 3.3V 5%, TA = -40C to +85C.) (Figure 17-6) PARAMETER JTCLK Clock Period JTCLK Clock High/Low Time (Note 1) JTCLK to JTDI, JTMS Setup Time JTCLK to JTDI, JTMS Hold Time JTCLK to JTDO Delay JTCLK to JTDO High-Z Delay (Note 2) JTRST Width Low Time
Note 1: Note 2: Clock can be stopped high or low. Not tested during production test.
SYMBOL t1 t2/t3 t4 t5 t6 t7 t8
MIN 50 50 50 2 2 100
TYP 1000 500
MAX
UNITS ns ns ns ns ns ns ns
50 50
Figure 17-6. JTAG Timing Diagram
t1 t2 JTCLK t3
t4
t5
JTDI, JTMS, JTRST t6 t7
JTDO
JTRST
t8
55 of 71
DS3251/DS3252/DS3253/DS3254
18.
PIN ASSIGNMENTS
Table 18-A lists pin assignments sorted by signal name. DS3254 has all four LIUs. DS3253 has only LIUs 1, 2, and 3. DS3252 has only LIUs 1 and 2. DS3251 has only LIU 1. Figure 18-1 through Figure 18-11 show pinouts for the four devices in both hardware and CPU bus modes.
Table 18-A. Pin Assignments Sorted by Signal Name
NAME A0 A1 A2 A3 A4 A5 ALE CPHA CPOL CS D0 D1 D2 D3 D4 D5 D6 D7 E3MCLK E3Mn HIZ HW INT JTCLK JTDI JTDO JTMS JTRST LLBn MOT PRBSn RBIN RCINV RCLKn RD / DS RJAn RLBn RLOSn HARDWARE MODE N N N N N N N N N N N N N N N N N N Y Y Y Y N Y Y Y Y Y Y N Y Y Y Y N Y Y Y PARALLEL BUS MODE Y Y Y Y Y Y Y N N Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N Y Y N N Y Y N N Y SPI BUS MODE N N N N N N N Y Y Y N N N N N N N N Y N Y Y Y Y Y Y Y Y N Y Y N N Y Y N N Y B4 C5 A1 L9 K8 M12 C1 K12 B6 D11 E10 A12 J2 H3 M1 B1 L12 D9 J9 A10 M3 B5 L8 C6 A11 M2 F3 G10 J8 E9 C5 E4 H4 J4 D5 D4 E11 H2 PIN LIU 1 LIU 2 K6 L6 K7 L7 K8 L8 C7 H3 J3 B7 E3 F2 F3 G2 G3 H2 H3 J3 E12 C7 K6 LIU 3 LIU 4
56 of 71
DS3251/DS3252/DS3253/DS3254 HARDWARE MODE Y Y Y Y Y Y N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N PARALLEL BUS MODE Y Y Y Y Y Y N N N Y N Y N N Y Y N N Y N N Y Y Y Y Y Y Y Y SPI BUS MODE Y Y Y Y Y Y Y Y Y Y N Y N N Y Y N N Y N N Y Y Y Y Y Y Y Y C4 E3 D2 D1 E2 G1 F1 K9 H10 J11 J12 H11 F12 G12 E1 D3 G2 G3 H12 J10 F11 F10 J5 D10 C8 B9 A9 B8 A6 A7 J3 K5 L4 M4 L5 M7 M6 F2 G11 A5 D8 H9 A8 C9 B6 C6 M5 K4 L7 K7 B2 A2 A3 L11 M11 M10 F3 F2 E3 M8 B7 L6 PIN LIU 1 C3 C2 LIU 2 K10 K11 H1 B11 B12 C12 L2 L1 K1 LIU 3 C10 B10 LIU 4 K3 L3
NAME RNEGn / RLCVn RPOSn / RDATn RST RTSn RXNn RXPn SCLK SDI SDO STMCLK STSn T3MCLK TBIN TCINV TCLKn TDMn TDSAn TDSBn TEST TJAn TLBOn TNEGn TPOSn / TDATn TTSn TXNn TXPn VDD VSS WR / R/W
D6, E5, E6, F4, F5, F6, G7, G8, G9, H7, H8, J7 D7, E7, E8, F7, F8, F9, G4, G5, G6, H5, H6, J6 B5
57 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-1. DS3251 Hardware Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 STS1 G2 TDSA1 H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 E3 TLBO1 F3 E3M1 G3 TDSB1 H3 N.C. J3 N.C. K3 N.C. L3 N.C. M3 N.C. A4 RMON1 B4 RJA1 C4 TJA1 D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 LLB1 C5 RLB1 D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 N.C. C6 N.C. D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 N.C. B7 N.C. C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 TBIN E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 N.C. B9 N.C. C9 N.C. D9 RBIN E9 HW F9 VSS G9 VDD H9 TCINV J9 RCINV K9 N.C. L9 N.C. M9 N.C. A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 N.C. K10 N.C. L10 N.C. M10 N.C. A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 N.C. J11 N.C. K11 N.C. L11 N.C. M11 N.C. A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 N.C. G12 N.C. H12 N.C. J12 N.C. K12 N.C. L12 N.C. M12 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
58 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-2. DS3251 Parallel Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 D1 G2 D3 H2 D5 J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 A0 L6 A1 M6 N.C. A7 N.C. B7 CS C7 ALE D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 A2 L7 A3 M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 N.C. B9 N.C. C9 N.C. D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 N.C. K10 N.C. L10 N.C. M10 N.C. A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 N.C. J11 N.C. K11 N.C. L11 N.C. M11 N.C. A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 N.C. G12 N.C. H12 N.C. J12 N.C. K12 N.C. L12 N.C. M12 N.C.
E3
D0 F3 D2 G3 D4 H3 D6 J3 D7 K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
59 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-3. DS3251 SPI Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 SDI G2 N.C. H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 N.C. B7 CS C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 N.C. B9 N.C. C9 N.C. D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 N.C. K10 N.C. L10 N.C. M10 N.C. A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 N.C. J11 N.C. K11 N.C. L11 N.C. M11 N.C. A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 N.C. G12 N.C. H12 N.C. J12 N.C. K12 N.C. L12 N.C. M12 N.C.
E3
SDO F3 SCLK G3 N.C. H3 CPHA J3 CPOL K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
60 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-4. DS3252 Hardware Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 STS1 G2 TDSA1 H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 E3 TLBO1 F3 E3M1 G3 TDSB1 H3 N.C. J3 N.C. K3 N.C. L3 N.C. M3 N.C. A4 RMON1 B4 RJA1 C4 TJA1 D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 LLB1 C5 RLB1 D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 N.C. C6 N.C. D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 N.C. B7 N.C. C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 TBIN E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 RLB2 L8 LLB2 M8 A9 N.C. B9 N.C. C9 N.C. D9 RBIN E9 HW F9 VSS G9 VDD H9 TCINV J9 RCINV K9 TJA2 L9 RJA2 M9 A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 TDSB2 G10 E3M2 H10 TLBO2 J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 TDSA2 G11 STS2 H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
STMCLK RMON2
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
61 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-5. DS3252 Parallel Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 D1 G2 D3 H2 D5 J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 A0 L6 A1 M6 N.C. A7 N.C. B7 CS C7 ALE D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 A2 L7 A3 M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 A4 L8 N.C. M8 STMCLK A9 N.C. B9 N.C. C9 N.C. D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
D0 F3 D2 G3 D4 H3 D6 J3 D7 K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
62 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-6. DS3252 SPI Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 SDI G2 N.C. H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 N.C. B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 N.C. B7 CS C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 N.C. B8 N.C. C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 N.C. B9 N.C. C9 N.C. D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 N.C. B10 N.C. C10 N.C. D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 N.C. B11 N.C. C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 N.C. B12 N.C. C12 N.C. D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
SDO F3 SCLK G3 N.C. H3 CPHA J3 CPOL K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
63 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-7. DS3253 Hardware Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 STS1 G2 TDSA1 H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 E3 TLBO1 F3 E3M1 G3 TDSB1 H3 N.C. J3 N.C. K3 N.C. L3 N.C. M3 N.C. A4 RMON1 B4 RJA1 C4 TJA1 D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 LLB1 C5 RLB1 D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 TXN3 B6 TDSA3 C6 TDSB3 D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 TXP3 B7 STS3 C7 E3M3 D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 TCLK3 B8 TTS3 C8 TLBO3 D8 TBIN E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 RLB2 L8 LLB2 M8 A9 TPOS3 B9 TNEG3 C9 TDM3 D9 RBIN E9 HW F9 VSS G9 VDD H9 TCINV J9 RCINV K9 TJA2 L9 RJA2 M9 A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 TJA3 E10 RLB3 F10 TDSB2 G10 E3M2 H10 TLBO2 J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 RJA3 E11 LLB3 F11 TDSA2 G11 STS2 H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 RMON3 E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
STMCLK RMON2
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
64 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-8. DS3253 Parallel Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 D1 G2 D3 H2 D5 J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 TXN3 B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 A0 L6 A1 M6 N.C. A7 TXP3 B7 CS C7 ALE D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 A2 L7 A3 M7 N.C. A8 TCLK3 B8 TTS3 C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 A4 L8 A5 M8 STMCLK A9 TPOS3 B9 TNEG3 C9 TDM3 D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
D0 F3 D2 G3 D4 H3 D6 J3 D7 K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
65 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-9. DS3253 SPI Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 N.C. L1 N.C. M1 N.C. A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 SDI G2 N.C. H2 N.C. J2 N.C. K2 N.C. L2 N.C. M2 N.C. A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 N.C. L4 N.C. M4 N.C. A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 N.C. M5 N.C. A6 TXN3 B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 N.C. A7 TXP3 B7 CS C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 N.C. A8 TCLK3 B8 TTS3 C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 TPOS3 B9 TNEG3 C9 TDM3 D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
SDO F3 SCLK G3 N.C. H3 CPHA J3 CPOL K3 N.C. L3 N.C. M3 N.C.
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
66 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-10. DS3254 Hardware Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 RMON4 K1 RXP4 L1 RXN4 M1 RLOS4 A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 STS1 G2 TDSA1 H2 LLB4 J2 RJA4 K2 N.C. L2 RTS4 M2 PRBS4 A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 E3 TLBO1 F3 E3M1 G3 TDSB1 H3 RLB4 J3 TJA4 K3 RNEG4 L3 RPOS4 M3 RCLK4 A4 RMON1 B4 RJA1 C4 TJA1 D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 TDM4 L4 TNEG4 M4 TPOS4 A5 T3MCLK B5 LLB1 C5 RLB1 D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 TLBO4 L5 TTS4 M5 TCLK4 A6 TXN3 B6 TDSA3 C6 TDSB3 D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 E3M4 L6 STS4 M6 TXP4 A7 TXP3 B7 STS3 C7 E3M3 D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 TDSB4 L7 TDSA4 M7 TXN4 A8 TCLK3 B8 TTS3 C8 TLBO3 D8 TBIN E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 RLB2 L8 LLB2 M8 A9 TPOS3 B9 TNEG3 C9 TDM3 D9 RBIN E9 HW F9 VSS G9 VDD H9 TCINV J9 RCINV K9 TJA2 L9 RJA2 M9 A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 TJA3 E10 RLB3 F10 TDSB2 G10 E3M2 H10 TLBO2 J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 RJA3 E11 LLB3 F11 TDSA2 G11 STS2 H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 RMON3 E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
STMCLK RMON2
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
67 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-11. DS3254 Parallel Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 RXP4 L1 RXN4 M1 RLOS4 A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 D1 G2 D3 H2 D5 J2 N.C. K2 N.C. L2 RTS4 M2 PRBS4 A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 TDM4 L4 TNEG4 M4 TPOS4 A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 TTS4 M5 TCLK4 A6 TXN3 B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 A0 L6 A1 M6 TXP4 A7 TXP3 B7 CS C7 ALE D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 A2 L7 A3 M7 TXN4 A8 TCLK3 B8 TTS3 C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 A4 L8 A5 M8 STMCLK A9 TPOS3 B9 TNEG3 C9 TDM3 D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
D0 F3 D2 G3 D4 H3 D6 J3 D7 K3 RNEG4 L3 RPOS4 M3 RCLK4
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
68 of 71
DS3251/DS3252/DS3253/DS3254
Figure 18-12. DS3254 SPI Bus Mode Pin Assignment
A1 RLOS1 B1 PRBS1 C1 RCLK1 D1 TPOS1 E1 TCLK1 F1 TXP1 G1 TXN1 H1 RST J1 N.C. K1 RXP4 L1 RXN4 M1 RLOS4 A2 RXN1 B2 RTS1 C2 RPOS1 D2 TNEG1 E2 TTS1 F2 SDI G2 N.C. H2 N.C. J2 N.C. K2 N.C. L2 RTS4 M2 PRBS4 A3 RXP1 B3 N.C. C3 RNEG1 D3 TDM1 A4 N.C. B4 N.C. C4 N.C. D4 JTRST E4 JTCLK F4 VDD G4 VSS H4 JTDI J4 JTDO K4 TDM4 L4 TNEG4 M4 TPOS4 A5 T3MCLK B5 WR C5 INT D5 JTMS E5 VDD F5 VDD G5 VSS H5 VSS J5 TEST K5 N.C. L5 TTS4 M5 TCLK4 A6 TXN3 B6 RD C6 MOT D6 VDD E6 VDD F6 VDD G6 VSS H6 VSS J6 VSS K6 N.C. L6 N.C. M6 TXP4 A7 TXP3 B7 CS C7 N.C. D7 VSS E7 VSS F7 VSS G7 VDD H7 VDD J7 VDD K7 N.C. L7 N.C. M7 TXN4 A8 TCLK3 B8 TTS3 C8 N.C. D8 N.C. E8 VSS F8 VSS G8 VDD H8 VDD J8 HIZ K8 N.C. L8 N.C. M8 STMCLK A9 TPOS3 B9 TNEG3 C9 TDM3 D9 N.C. E9 HW F9 VSS G9 VDD H9 N.C. J9 N.C. K9 N.C. L9 N.C. M9 N.C. A10 RCLK3 B10 RPOS3 C10 RNEG3 D10 N.C. E10 N.C. F10 N.C. G10 N.C. H10 N.C. J10 TDM2 K10 RNEG2 L10 N.C. M10 RXP2 A11 PRBS3 B11 RTS3 C11 N.C. D11 N.C. E11 N.C. F11 N.C. G11 N.C. H11 TTS2 J11 TNEG2 K11 RPOS2 L11 RTS2 M11 RXN2 A12 RLOS3 B12 RXN3 C12 RXP3 D12 N.C. E12 E3MCLK F12 TXN2 G12 TXP2 H12 TCLK2 J12 TPOS2 K12 RCLK2 L12 PRBS2 M12 RLOS2
E3
SDO F3 SCLK G3 N.C. H3 CPHA J3 CPOL K3 RNEG4 L3 RPOS4 M3 RCLK4
High-Speed Analog High-Speed Digital Low-Speed Digital VDD VSS
69 of 71
DS3251/DS3252/DS3253/DS3254
19.
PACKAGE INFORMATION
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.)
Note: All dimensions in millimeters.
A1 BALL PAD CORNER 13.00 12 11 10 9 8 7 6 5 4 3 2 1
A 1.00 B C D E F 13.00 G H J K (1.00) L M
(1.00)
1.00
BOTTOM VIEW
70 of 71
DS3251/DS3252/DS3253/DS3254
20.
THERMAL INFORMATION
MIN -40C -40C TYP -- -- 22.4C/W 9.2C/W 1.6C/W MAX +85C +125C
Table 20-A. Thermal Properties, Natural Convection
PARAMETER Ambient Temperature (Note 1) Junction Temperature Theta-JA (qJA), Still Air (Note 2) Psi-JB Psi-JT
Note 1: The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power. Note 2: Theta-JA (qJA) is the junction to ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.
Table 20-B. Theta-JA (qJA) vs. Airflow
FORCED AIR (METERS PER SECOND) 0 1 2.5 THETA-JA (qJA) 22.4C/W 19.0C/W 17.2C/W
21.
REVISION HISTORY
DESCRIPTION
REVISION
031805 061705
New Product Release (DS3254) New Product Release (DS3251/DS3252/DS3253)
71 of 71
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
(c) 2005 Maxim Integrated Products * Printed USA
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.


▲Up To Search▲   

 
Price & Availability of DS3252

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X